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Voice Activity Detection for Transient Noisy
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Abstract—We address voice activity detection in acoustic envi-
ronments of transients and stationary noises, which often occur
in real-life scenarios. We exploit unique spatial patterns of speech
and non-speech audio frames by independently learning their un-
derlying geometric structure. This process is done through a deep
encoder–decoder-based neural network architecture. This struc-
ture involves an encoder that maps spectral features with temporal
information to their low-dimensional representations, which are
generated by applying the diffusion maps method. The encoder
feeds a decoder that maps the embedded data back into the high-
dimensional space. A deep neural network, which is trained to sep-
arate speech from non-speech frames, is obtained by concatenating
the decoder to the encoder, resembling the known diffusion nets
architecture. Experimental results show enhanced performance
compared to competing voice activity detection methods. The im-
provement is achieved in both accuracy, robustness, and general-
ization ability. Our model performs in a real-time manner and can
be integrated into audio-based communication systems. We also
present a batch algorithm that obtains an even higher accuracy for
offline applications.

Index Terms—Deep learning, diffusion maps, voice activity
detection.

I. INTRODUCTION

VOICE activity detection refers to a family of methods that
perform segmentation of an audio signal into parts that

contain speech and silent parts. In this study, audio signals are
captured by a single microphone and contain clean sequences
of speech and silence. These signals are mixed with station-
ary and non-stationary noises (transients), e.g., door knocks and
keyboard tapping [1], [2]. Our objective is to correctly assign
each captured audio frame into the category of speech pres-
ence or absence. A solution to this problem may benefit many
speech-based applications such as speech and speaker recogni-
tion, speech enhancement, emotion recognition and dominant
speaker identification.
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In acoustic environments that contain neither stationary or
non-stationary noise, speech is detected by using methods that
rely on frequency and energy values in short time frames [3]–[5].
These methods show significant deterioration in performance
when noise is present, even with mild levels of signal-to-noise
ratios (SNRs). To cope with this problem, several approaches as-
sume statistical models of the noisy signal in order to estimate its
parameters [6]–[11]. Nonetheless, these methods are incapable
of properly modeling transient interferences, which constitute
an essential part of this study. Ideas that involve dimension-
ality reduction through kernel-based methods are introduced
in [12], where both supervised and unsupervised approaches
have been exploited. However, its main limitation is a signifi-
cant low-dimensional overlap between speech and non-speech
representations.

Machine learning techniques have been employed for voice
activity detection in recent studies [13], [14]. In contrast to clas-
sic methods, these approaches learn to implicitly model data
without assuming an explicit model of a noisy signal. In par-
ticular, deep learning based methods have gained popularity
in recent years due to a substantial increase in both compu-
tational power and data resources. Mendelev et al. [15] con-
structed a deep neural network for voice activity detection, and
suggested to employ the dropout technique [16] for enhanced
robustness. The main drawback of this method is that tempo-
ral information between adjacent audio frames is ignored, due
to independent classification of each time frame. Studies pre-
sented in [17]–[20] used a recurrent neural network (RNN) to
integrate temporal context with the use of past frames. How-
ever, the rapid time variations and prominent energy values of
non-stationary noises in comparison to speech are still the main
cause of degraded performance in these methods. A recent study
conducted by Ariav et al. [21] proposed to use an auto-encoder
to implicitly learn an audio signal embedded representation. To
enhance temporal relations between frames, this auto-encoder
feeds an RNN. Despite its leading performance, the reported
results are still unsatisfactory. Our study found that the main
limitation of this algorithm is the dense low-dimensional rep-
resentation forced by the auto-encoder and into the RNN. This
density occurs largely due to the joint training of speech and
non-speech frames, which fails to enhance their unique fea-
tures. Thus, their low-dimensional representations, which are
the sole information that feeds the RNN, are embedded closely
in terms of Euclidean distance. Eventually, this poses a difficulty
in separation of speech from non-speech frames based merely
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on temporal information, which is the core advantage of using
RNN architecture.

In this work, we propose an algorithm that addresses the limi-
tations found in the methods proposed in [12] and [21]. We inde-
pendently learn the low-dimensional spatial patterns of speech
and non-speech audio frames through the Diffusion Maps (DM)
method. DM is a method that performs non-linear dimension-
ality reduction by mapping high-dimensional data points to
a manifold, embedded in a low-dimensional space [22]. The
mapped coordinates that lay on this manifold are referred to as
DM coordinates. Since this method preserves locality, frames
with similar contents in the original high dimension are mapped
closely in the low, embedded dimension, with respect to their
Euclidean distance. We separately apply DM for speech and
non-speech frames through a pair of independent deep encoder-
decoder structures. Inspired by the Diffusion nets architecture
[23], the end of each encoder is forced to coincide with the
embedded DM coordinates of its high-dimensional input. This
approach allows us to differ the intrinsic structure of speech
from the ones of transients and background noises based on the
Euclidean metric.

We suggest two variations for the voice activity detection
algorithm, one for real-time applications and one for batch pro-
cesses. We test both approaches on five comparative experiments
conducted in [12], [21], [24]. Results show enhanced voice ac-
tivity detection performance, that surpasses the known state-
of-the-art speech detection results. Furthermore, our proposed
architecture is more robust and has better generalization ability
than competing methods, as demonstrated through experiments.

The remainder of this paper is organized as follows. In Sec-
tion II, we formulate the problem. In Section III, we introduce
the proposed solution. In Section IV, we expand on the data set
and feature extraction. In Section V we describe the training
and testing processes. In Section VI, we present the results of
the proposed approach for voice activity detection with compar-
isons to competing methods. Finally, in Section VII, we draw
conclusions as well as future research directions.

II. PROBLEM FORMULATION

Let s [n] denote the following audio signal:

s [n] = ssp [n] + sst [n] + st [n] , (1)

where sp, st and t stand for speech, stationary background noise
and transient interference, respectively. The time domain signal
is processed in overlapping time frames of length M . Let fn ∈
RM denote thenth audio frame and let {fn}Nn=1 denote the audio
data set ofN time frames. LetH0 andH1 be two hypotheses that
stand for speech absence and presence, respectively. In addition,
let I(fn ) be a speech indicator of the nth audio frame, defined
as:

I(fn ) =

{
1, fn ∈ H1

0, fn ∈ H0

}
. (2)

The goal of this study is to estimate I(fn ), i.e., to correctly
classify each audio frame fn as a speech or non-speech frame.

Fig. 1. Proposed architecture for voice activity detection. Dashed line is valid
only for batch mode and solid line is constantly employed for both batch and
real-time modes. ‘En’ and ‘De’ are abbreviations for encoder and decoder,
respectively. Superscripts 0 and 1 relate to the index of the corresponding
trained DED. The circled ‘E’ notation refers to an error calculation unit, defined
in (3).

III. PROPOSED ALGORITHM FOR VOICE ACTIVITY DETECTION

Our proposed approach comprises several steps, as illustrated
in Fig. 1. Initially, feature extraction is employed in the time
domain. The features include the Mel Frequency Cepstral Co-
efficients (MFCCs) and their low-dimensional representation,
generated by the DM method. A detailed description is given
in Section IV-B. Subsequently, a deep encoder-decoder based
neural network is used to learn the unique patterns of speech and
non-speech signals. Since this structure makes use of the DM
method, it is regarded in this study as diffusion encoder-decoder
(DED). Next, error measures are extracted from the deep archi-
tecture. Those errors are represented in a coordinate system,
notated in this study as error map. It should be highlighted that
no mathematical operation is applied on the errors extracted
from the network. i.e., the error map is merely a representation
form which allows us to conduct better analysis and gain deeper
insights on the performance of our detector, as will be shown
along this paper. A classifier, fed by the coordinates of the error
map, is constructed to separate speech presence and absence.
In this study, two different modes are used for classification.
First, a batch mode is considered, where a substantial corpus of
speech and non-speech audio frames must be at hand, in order
to evaluate the outcome of the DM process correctly. In batch
mode, both low and high-dimensional errors are taken into ac-
count during classification. The second classification mode is
real-time, which exploits merely high-dimensional error infor-
mation. In this case, integration of DM is not required, which
allows a frame-by-frame classification with negligible delay.

A. Deep Encoder-Decoder Neural Network

Our approach suggests that speech frames can be sep-
arated from non-speech frames based on their intrinsic
low-dimensional representation. Ideas from [23] are adopted
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to merge DM with two independent, identically constructed
DEDs, notated by DEDi , where i ∈ {0, 1}. DM allows a geo-
metric interpretation of the data by constructing its underlying
embedding, which can be represented by the middle layer
of any basic encoder-decoder network [21]. To exploit this
property, the middle layer is forced to coincide with the true
DM coordinates of the input layer. As a result, the encoder of
DEDi is trained to map spectral features affiliated with Hi from
their original space to the lower diffusion space. Subsequently,
the decoder of DEDi learns the inverse mapping back to the
high-dimensional feature space.

A deep architecture is constructed to implement the above
notion, as illustrated in Fig. 1. In this proposed system, each
DED comprises two stacked parts, an encoder and a decoder.
The former is constructed from a 72 neurons input layer followed
by two layers of 200 neurons each and a final layer of 3 neurons.
The deep decoder is a reflection of the deep encoder. While the
size of the middle and hidden layers are determined empirically,
the size of the input (and thus, the output) layer of each DED
is derived from the feature extraction process, as described in
Section IV-B. In the output of each layer, an identical activation
function is employed on each neuron (12).

B. Error Maps and Voice Activity Detection Classifier

Let us denote a single observation of an input feature vector
as a and its true DM coordinates as m. Additionally, m̂ and â
denote the encoding of a by a trained encoder and its recon-
struction by a trained decoder, respectively. Each observation is
fed into the trained DEDs simultaneously. That way, the rela-
tions between each hypothesis and the constructed embeddings
are compared under the same conditions. These measures are
employed through een (m) and ede (a), where:

een (m) = ‖m − m̂‖1 ; ede (a) = ‖a − â‖1 , (3)

while ‖·‖1 denotes the �1 norm. Namely, as een (m) represents
the mapping error, ede (a) is associated with the reconstruction
error of a.

In this study, two classification modes are considered. In the
batch mode, both een (m) and ede (a) are taken into account.
Namely, each observation a ultimately generates two pairs of
errors, one from each DED. These errors are interpreted as
a four-dimensional coordinate that is embedded into an error
map. In the real-time mode, on the other hand, only the decoder
error ede (a) is extracted from each DED. i.e., in this scenario a
two-dimensional coordinate is embedded into the error map.

Subsequently, a support vector machine (SVM) classifier with
linear kernel is trained on the error map, which contains the
generated error measures from a corpus of observations. The
objective of this classifier is to separate between coordinates
affiliated with different hypotheses. As a result, two decision re-
gions are created, for speech presence and absence. Since DEDi

is trained to construct a low-dimensional manifold on which Hi

is embedded, frames related to Hi highly fit the learned map-
ping of DEDi . This leads to substantially lower errors, which
could be easily identified as a separate cluster. This assumption

is derived from the property of the DM method, in which the dif-
fusion distance in the original feature dimension is proportional
to the �1 norm in the diffusion space. In this study, a classic
SVM classifier is shown to be sufficient.

It is worth noting that we have also implemented an alterna-
tive architecture to the one presented in Fig. 1, which involves
a unified network instead of an SVM. The goal of this was to
assert the improvement, and thus justify the employment, of
our suggested system over the alternative of the fully connected
neural network, which is commonly used in deep learning algo-
rithms. We concatenated the output layer of both DED branches
to each other and to the input layer. Then, this augmented layer
was connected to a single-bit output neuron that carries the VAD
decision. Results have shown very similar performance, with a
slight tendency to the SVM based method. As a results, we have
decided to use the originally presented architecture. Two minor
advantages of the SVM can be noted over the unified neural net-
work. First, it is less computationally expensive in comparison
to using an additional hidden layer, which will consume higher
memory and time during back propagation. Second, the origi-
nal method explicitly constructs the error measures and feeds
them to the SVM, which leads to high separation of speech
from silence. Therefore, the hidden layer attempts to implicitly
represent the data in a similar manner, i.e., to find the relation
between the neurons which will ultimately lead to good sepa-
ration. Representing the error measures in the two-dimensional
space and applying the SVM on it both serves as a more nat-
ural, intuitive classification algorithm and avoids the infamous
“black box” property of the neural network, as well as grants
us the ability to analyze the decision of the detector in a helpful
and profound manner, as will be done later on.

IV. DATABASE AND FEATURE EXTRACTION

A. Database

We adopt the audio database presented in [12] to construct
a DED training set, a classifier training set and a back to end
test set. This database is obtained from 11 different speakers
reading aloud an article chosen from the web, while making
natural pauses every few sentences. Naturally, these recordings
are composed of sequences of speech followed by non-speech
frames. Each sequence varies from several hundred milliseconds
to several seconds in length. These signals were recorded with
an estimated SNR of 25 dB at a sampling rate of 8 kHz. Each
of the 11 signals is 120 seconds long and it is processed using
short time frames of 634 samples with 50% overlap, which
effectively generates a 25 frames/second rate. The clean speech
signal ssp [n], defined in (1), is used to determine the presence
or absence of speech in each time frame, and to construct a label
set accordingly.

These clean audio signals are contaminated by 42 different
pairs of additive stationary and non-stationary noises, which
construct a varied data set. The noise signals employed in-
clude white and colored Gaussian noise, babble and musical
instruments. Transients include keyboard taps, scissors snap-
ping, hammering and door knocks.
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B. Feature Extraction

We wish to exploit the ability of deep neural networks to learn
complex relations between their inputs and outputs. Hence, our
objective is to feed our architecture with features that express
the unique patterns of each hypothesis (2). To generate spec-
tral information from the time domain database, MFCCs are
employed. These coefficients are concatenated along a fixed
number of adjacent frames, in order to gain temporal context
between them. DM is applied to integrate spatial properties and
to find a relation between the spectrum of the signal and its
geometric low-dimensional structure.

1) Mel Frequency Cepstral Coefficients: Features based on
a spectral representation of audio signals are fully adopted from
the study of Dov et al. [12]. To construct them, weighted MFCCs
are employed. MFCCs use the perceptually meaningful Mel-
frequency scale, which allows a compact representation of the
spectrum of speech [25]. MFCC features are used in the pres-
ence of highly non-stationary noise, where they were found to
perform well for speech detection tasks [26].

However, speech frames may have similar MFCC represen-
tation to frames comprising highly non-stationary noise as well,
since they both have akin spectral attributes. To address this
challenge, noise estimation is performed in each frame and the
MFCCs in that frame are weighted accordingly [12], [26], [27].
This enables better analysis by separating the background noise
from the rest. Next, several consecutive time frames are taken
into account. Hence, the nature of transients, which their typical
duration is assumed to be of the order of a single time frame,
can be exploited.

Formally, consider an ∈ RC as a row vector ofC coefficients,
consisting of weighted MFCCs, and their first and second deriva-
tives, Δ and ΔΔ, respectively. These values are extracted from
the nth time domain audio frame fn , introduced in Section II.
Let:

an = [an−J , . . . ,an , . . . ,an+J ] ∈ R(2J+1)C (4)

denote concatenation of feature vectors from 2J + 1 adjacent
frames, where J is the number of past and future time frames.
For J ≥ 1, the elements of an in the presence of transients are
expected to vary faster than in the presence of speech.

In this study, the number of MFCCs is 8, as commonly used.
Thus, an comprises of C = 24 coefficients. For practical con-
siderations, we assign a relatively small value of J = 1. This
allows informative characterization of audio frames based on
past-future relations, while consuming low computational load.
Thus:

an = [an−1 ,an ,an+1] ∈ R72 . (5)

Next, standardization is applied on (5). Let us assume a set of
N observations, while the nth observation is given by (5), for
n ∈ {1, . . . , N}. For each feature index l ∈ {1, . . . , 72}, a row
vector Ol ∈ RN is defined as:

Ol = [a1 (l) , . . . ,aN (l)] . (6)

Then, the mean and standard deviation of Ol are extracted
and termed μl and σl , respectively. Next, the following vectors

are constructed:

μ = [μ1 , . . . , μ72 ] ; σ = [σ1 , . . . , σ72 ] . (7)

Let ãn (l) denote the lth element of the standardized an (l),
defined as:

ãn (l) =
an (l) − μl

σl
. (8)

2) Diffusion Maps: The middle layer of any basic autoen-
coder architecture can be viewed as a low-dimensional repre-
sentation of its input layer [28]. Our method exploits this by
forcing the middle layer to coincide with the embedded coor-
dinates of ãn , generated by the DM method [29]. Thus, the
encoder learns to approximate this low-dimensional mapping,
while the decoder learns the inverse high-dimensional mapping.
DM is a manifold learning approach that is established on the
graph Laplacian of the high-dimensional data corpus [30]. DM
has been employed well in several signal processing, image
processing and machine learning applications [31]–[39].

Let us consider a set of feature vectors {ãn}n , constructed
according to (8). A weighted graph is created with the elements
of the set as nodes (or points), where the weight of the edge
connecting these nodes is given by the commonly used radial
basis function (RBF) kernel. The scaling parameter of the kernel
is set separately for each edge as in [40]. Practically, merely the
10 nearest neighbors of every point are used to compute the
edges. Namely, edges that are not among the nearest neighbors
of ãn are nullified.

In order for the embedding and the distribution of the nodes
to be independent, we perform normalization of the data. There-
fore, an approximation of the Laplace-Beltrami operator on the
data is obtained [29], [31]. This operation generates a row-
stochastic matrix P which can be viewed as the transition
matrix of a Markov chain on the data set {ãn}. Two sets of
bi-orthogonal left and right eigenvectors, {φn} and {ψn}, are
constructed by employing an Eigenvalue decomposition of P .
This process also yields a series of strictly positive eigenvalues
1 = |λ0 | ≥ |λ1 | ≥ · · · ≥ |λn−1 | > 0.

Through informal experiments, we found that for retaining
the desired patterns of speech and non-speech frames, it is suffi-
cient that the embedded dimension is set to d = 3 (excluding the
trivial dimension associated with λ0). Furthermore, d is small
enough to exclude undesired high frequency noise, mostly repre-
sented by higher dimensions. The low-dimensional embedding
of ãn (8) is notated by mn and defined as:

mn = (λ1ψ1 (ãn ) , . . . , λ3ψ3 (ãn )) . (9)

Therefore, the set {ãn} is embedded into the Euclidean space
R3 . In this space, the Euclidean distance is equal to the diffusion
distance in the high-dimensional space of {ãn}.

Our architecture integrates an activation function which maps
its input to the interval [0, 1]. On the other hand, mn often holds
values which may exceed this interval. Therefore, this mis-
match increases the error measures defined in (3). Earlier works
have demonstrated that prediction accuracy can be improved
by normalizing DM coordinates [41]. We employ these notions
to overcome the aforementioned mismatch, by mapping the
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dynamic range of mn to [0, 1]. Specifically, the transformation
that is employed corresponds to connecting mn to m̃n through
a softmax layer [42], as follows:

m̃n (k) =
emn (k)∑3
l=1 e

mn (l)
, (10)

where 1 ≤ k ≤ 3. As a result, 0 ≤ m̃n (k) ≤ 1 and∑3
k=1 m̃n (k) = 1.

V. EXPERIMENTAL SETTING

A. Notation

Let sj ∈ RL denote the contaminated audio signal associated
with speaker j ∈ {1, . . . , 11}, comprising of L samples. Let
sij denote the union of audio time frames in sj that belong to
hypothesis Hi . Then, si is defined as the concatenation of sij
with respect to all 11 speakers, namely:

si =
[
si1 , . . . , s

i
11

]
, (11)

where i ∈ {0, 1}.

B. DED Training Process

Let us consider the two distinct sets s0 and s1 . Two training
sets, notated s0

tr,ded and s1
tr,ded, are created by randomly extracting

70% of s0 and s1 , respectively. Following Section IV-B1, the
feature vector extracted from the nth frame of sitr,ded is denoted
aitr,ded,n ∈ R72 . Next, standardization process (8) is applied on
the latter, which yields ãitr,ded,n ∈ R72 . This reveals two ad-
vantages; first, the network performs a faster learning process.
This occurs since standardization implicitly weights all fea-
tures equally in their representation. Thus, the rate at which the
weights connected to the input nodes learn is balanced. This
balance allows to rescale the learning rate through the learning
process. As a result, the adaptive gradient descent optimization
method can be deployed instead of the traditional gradient de-
scent. Second, this approach reduces saturation effects, caused
by large values assigned to activation functions. Next, the DM
method is applied on the set {ãitr,ded,n}n separately, for each
i ∈ {0, 1}, as described in Section IV-B2. The resulting low-
dimensional embedding is clipped to the dynamic range [0, 1]
and denoted by m̃i

tr,ded,n ∈ R3 . The proposed architecture en-
tails that while ãitr,ded,n is fed to DEDi , the middle layer of the
latter is enforced to coincide with m̃i

tr,ded,n . Let us denote DEDi
tr

as the ith trained DED.
We integrate the Positive Saturating Linear Transfer (PSLT)

activation function, defined as follows:

σ(z) =

⎧⎪⎨
⎪⎩

0, z ≤ 0
z, 0 ≤ z ≤ 1
1, z ≥ 1

⎫⎪⎬
⎪⎭ . (12)

The dynamic range that σ(z) generates, differently from the
known ReLU, suggests maintaining the fluctuations which may
appear along the tangled network. Employing σ(z) is beneficial
in terms of low computational load that is consumed during
back propagation, since the derivative of σ(z) is simply 1 or 0,

neglecting singularities. During back propagation, a nullified
derivative will decrease computation time even further, at the
expense of updating the weights of the network with less in-
formation. Empirically, it was shown not to deteriorate perfor-
mance. Also, it should be highlighted that complex non-linear
patterns can still be learned by the deep architecture. Pre-training
is applied on each layer separately in an unsupervised manner,
using encoder-decoder structures with 1 epoch and learning rate
of 0.1. The optimized weights obtained by this process are con-
sidered instead of the random initialization commonly used,
which enhances performance since it helps the network to avoid
local minima. Pre-training is extremely effective in case there
is a relatively small amount of training data, as in our scenario.
Next, fine-tuning is applied separately on the encoder and the
decoder. Namely, ãitr,ded,n is encoded into a low-dimensional rep-
resentation and decoded back to the output layer independently.
Subsequently, the two tuned parts are merged and fine-tuning is
again utilized, this time on the full stacked DED. Optimization
is employed by back propagation through time, which makes
use of gradient descent method, parameterized with learning
rate of 10−5 and momentum of 0.9. Prior to pre-training, the
weights are initialized with values drawn from a random normal
distribution with zero mean and variance 0.01. Cost function
with L2 weight regularization of 10−7 , sparsity regularization
of 4 and sparsity proportion of 0.1 is employed. Relatively large
sparsity related parameters were assigned, to achieve two goals.
First, this allows the networks to avoid over-fitting by effec-
tively ignoring weights with negligible values. Second, it de-
creases the computational load, since the embedding process
involves a sparse affinity matrix. The network was trained until
either 1,000 epochs or minimum gradient value of 10−6 were
achieved. A typical simulation as such took approximately 10
hours on a i7-7820HQ CPU 64-bit operating system, x64 based
processor.

In this study, the architecture was trained using a batch size of
128 observations. As a result, less memory was used compared
with feature-by-feature feeding, since fewer registers were em-
ployed at the same time. Moreover, the training was accelerated
due to less updates performed, i.e., less propagations through
the network. On the other hand, batch training may lead to less
accurate and stable estimation of the gradient.

C. Classifier Training Process

Let sitr,cl contain random 15% of the observations contained in
si , and let str,cl =

[
s0

tr,cl, s
1
tr,cl

]
be the full classifier training set.

str,cl is built so it is disjoint with the DED training set. Similarly
to the DED training process, ãtr,cl,n ∈ R72 and m̃tr,cl,n ∈ R3

represent feature vectors extracted from the nth frame of str,cl,
according to (8) and (10), respectively.

Error measures are defined to distinguish between features
that are mapped and reconstructed well and features that are not.
Consider two outcomes of propagating ãtr,cl,n through DEDi

tr.
Namely, its low-dimensional predicted representation, denoted
by m̃i

pr,n , and its subsequently predicted reconstruction, de-
noted by ãipr,n . Consequently, the following error measures are
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defined, given ãtr,cl,n :

eien(n) � ‖m̃tr,cl,n − m̃i
pr,n‖1 , (13)

which is associated with encoderi , and:

eide(n) � ‖ãtr,cl,n − ãipr,n‖1 , (14)

associated with decoderi . In both cases, ‖·‖1 denotes the �1
norm.

According to (13) and (14), it can be inferred that a pair of
numerical errors is generated by feeding ãtr,cl,n to each trained
DED. In this study, the two pairs of errors, associated with DED0

tr
and DED1

tr, are interpreted as a coordinate in R4 and are rep-
resented by

(
e0

en(n), e0
de(n), e1

en(n), e1
de(n)

)
. Namely, ãtr,cl,n is

eventually represented in a four-dimensional coordinate system.
An SVM classifier, notated by C, is applied on the error map,

as detailed in Section III-B. In this study, C is trained to separate
coordinates held by H0 from coordinates held by H1 (2). Thus,
two decision regions are created. In this study, both real-time
and batch modes are considered, as described in Section V-D.
For batch mode, C is trained on both the encoder and decoder
errors projected on the error map, i.e., C is a three-dimensional
hyper plane, embedded in R4 . Real-time mode only exploits
the decoder error. Namely, in this case the error map is a two-
dimensional coordinate system, and correspondingly C divides
R2 into two regions.

D. Testing Process

The DM method requires a batch of both speech and non-
speech frames to estimate the low-dimensional embedding. This
is impractical for real-time mode where a very small number of
frames is available. Therefore, two testing processes are pre-
sented; a frame-by-frame testing process in which employment
of the DM method is not required, and a batch testing process,
which is shown to be more accurate, with substantially higher
delay.

1) Batch Mode Testing Process: In batch mode, both the
encoder and the decoder errors are exploited, which increases
prediction accuracy. On the other hand, the encoder error is
well approximated as long as a large batch of time domain
audio data from both hypotheses (2) is at hand, which leads to
delay in prediction. The test set, notated by ste, is constructed by
following similar steps as in the previous section, while ensuring
that the intersection of ste and the training sets of the DED neural
network and classifier is empty. ste includes 15% of both s0 and
s1 (11). For completion, ãte,n ∈ R72 and m̃te,n ∈ R3 denote
the feature vectors associated with the nth observation of ste,
extracted according to (8) and (10), respectively.

Let
(
eien(n), eide(n)

)
represent the two-dimensional coordi-

nate generated by the propagation of ãte,n through DEDi
tr. e

i
en(n)

and eide(n) are produced according to (13) and (14), respectively.
For the sake of clarity, we neglect the time index n and address
eien(n) and eide(n) as a two-dimensional coordinate

(
eien, e

i
de

)
.

As stated earlier,
(
e0

en, e
0
de

)
and

(
e1

en, e
1
de

)
are concatenated and

projected into a four-dimensional error map. Let Rj stand for re-
gion j created by the devision C applied to the error map, where
j ∈ {0, 1}. Ultimately, the following decision rule is applied by

the classifier C on the input feature vector ãte,n :

C{ãte,n} =

⎧⎨
⎩
H0 ,

(
e0

en, e
0
de, e

1
en, e

1
de

) ∈ R0

H1 ,
(
e0

en, e
0
de, e

1
en, e

1
de

) ∈ R1

⎫⎬
⎭ . (15)

2) Real-Time Mode Testing Process: Since immediate pre-
diction is often required in many audio-based applications,
real-time mode is considered as the main branch of this study.
Compared with the batch mode, the low-dimensional error is
now unavailable. Meaning, the high-dimensional error becomes
the single measure to distinguish between audio frames of dif-
ferent hypotheses.

Let eide(n) denote the error produced by propagating ãte,n

through DEDi
tr. In a similar manner to the batch mode, e0

de(n)
and e1

de(n) are joined and projected into a two-dimensional error
map. For sake of clarity, we again address these two measures
as (e0

de, e
1
de). Let Rj stand for region j created by the devision

C applied to the two-dimensional error map, where j ∈ {0, 1}.
As a result, the following decision rule is considered by the
classifier C, regarding input feature vector ãte,n :

C{ãte,n} =

{
H0 ,

(
e0

de, e
1
de

) ∈ R0

H1 ,
(
e0

de, e
1
de

) ∈ R1

}
. (16)

VI. EXPERIMENTAL RESULTS

In each of the experiments described in this section, com-
parisons are made between our proposed approach and several
competing voice activity detectors. In order to avoid skewness
and unfair imbalance, performances were generated by using
identical experimental conditions. Specifically, the same test
set, acoustic setup and optimization measure, i.e., TN + TP (true
positive + true negative), are uniformly employed. To allow ap-
propriate assessment of performances, two measures are used:
The optimized TP+TN measure, and the relation between TP
and TN measures.

A. Performance of Proposed Approach

1) Accuracy: Primarily, the proposed method is applied us-
ing 100% of the DED training data set in a batch mode, as
detailed in Section V-D1. The accuracy rate is 99.1%. In this
mode, voice activity is detected by using both low and high-
dimensional numerical measures. This performance gives rise
to the main assumption of this research. Namely, that speech
can be distinguished from transients based on their underlying
geometric structures. Real-time voice activity detection is per-
formed according to Section V-D2. In this mode, the accuracy
rate reaches up to 98.1% when 100% of the DED training data
set is used. Visualization of the error map is given in Fig. 2.
It should be highlighted that similar visualization is not given
for the batch mode, since the corresponding error map lays in
R4 . These results reflect on the strong relation between low
and high-dimensional information. Namely, even though low-
dimensional measures are not integrated into the decision rule,
the separation in the diffusion space is implicitly expressed
through the inverse mapping of the decoder. Therefore, the
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Fig. 2. Two-dimensional error map, generated by the real-time mode. Red
circles denote speech presence and blue ‘x’ marks denote speech absence. The
trained linear SVM classifier is represented by the dashed line and the decision
regions it generates are notated by R0 and R1 .

Fig. 3. Accuracy rate percentage (TP+TN) of the proposed method using the
real-time mode. Different fractions of the full DED training set (25, 50, 75,
100 [%]) are considered along a grid of speech observations ratios.

reconstructed high-dimensional information in the feature space
is a sufficient measure to tell apart speech from non-speech
frames. By examining the results, high robustness can be con-
cluded. Namely, despite the variety of stationary and non-
stationary noises included in the database, the intrinsic structure
of speech is still well detected.

2) Generalization: Generalization and sensitivity of the pro-
posed method are analyzed by performing an additional experi-
ment in the real-time mode. These properties are examined with
respect to two parameters; the corpus size of the DED training
set and the ratio of speech observations in the latter. In this ex-
periment, 5 different fractions of the full amount of the DED
training set are considered. For each fraction, 5 different ra-
tios between speech and non-speech observations are inspected.
Results are demonstrated in Fig. 3. It can be observed that the
accuracy rate surpasses 95%, even when merely 50% of the
training data is available, which projects on the low sensitivity
of the proposed algorithm to this measure. Also, the maximal
accuracy is achieved when the speech observations ratio is equal
to 50%, i.e., when there is an equal amount of speech and non-
speech observations in the DED training set. This optimal ratio
allows the network to learn two separate manifolds with mini-
mal bias. This bias, if exists, can come to surface during testing,
when one mapping is more robust than the other. In this case,
relying on Euclidean distance between manifolds as done in
this research may be harmful for classification. It can also be
inferred that the performance has low sensitivity to changes in
the speech observations ratio parameter. For example, let us

consider the results achieved by exploiting 100% of the training
corpus. Then, speech observations ratios of 20%, 50% and 80%
yield accuracies of 95.2%, 98.1% and 94.4%, respectively. It is
interesting to note that the degradation in performance is not
symmetric around the ratio of 50%. i.e., degradation is more
noticeable when the amount of noise observations is lower than
those of speech in the training process. This can be related to
the high varying nature of non-stationary noises in compari-
son to speech. Meaning, larger corpus of transients is needed
to construct a robust low-dimensional structure with the DM
method.

As mentioned in Section IV-A, the constructed database com-
prises 42 different combinations of stationary and non-stationary
noises. Thus, a fundamental question is concerned with the abil-
ity of the proposed detection system, and specifically DED0 , to
generalize well to other types of noise. In order to increase the
generalization ability of the suggested detector to noises of var-
ious kinds, we performed several actions that regard both the
architecture of the system and the feature extraction process.
The way the architecture is built puts emphasis on both the dif-
ference between speech and noise, and on the similarity of noise
to previously trained noises. As a result, the decision mechanism
of the system relies on a combination of two learning systems.
The features that are extracted from the time domain are con-
structed to exploit this form of architecture. During training, not
only temporal and spectral features are derived, as traditionally
done in state-of-the-art methods, but also the informative spatial
diffusion map features. This reveals the unique intrinsic geomet-
ric structure of speech utterances. Ultimately, when feeding the
system with unseen noise, its intrinsic structure is evaluated by
the system and compared against speech and non-speech frames
separately. Therefore, the performance of the system is not sen-
sitive to unseen noises, in comparison to competing methods,
as shown through the experimental setup detailed earlier in this
section.

B. Comparison to Competing Methods

In order to assert the performance of our architecture in a
global scale, it is compared to 5 voice activity detectors. The
competing methods are presented in [12], [21], [24] and are
denoted “Ariav,” “Dov” and “Tamura,” respectively. Table I
presents the performance of each method in 5 different acoustic
environments that compose of transients (keyboard, hammering,
scissors) and stationary noises (babble, musical, colored Gaus-
sian noise) with different SNR values (0, 5, 10, 15 [dB]). The
real-time and batch modes are notated by ‘Proposed Real-Time’
and ‘Proposed Batch,’ respectively.

It can be observed that the proposed algorithm, even in real-
time mode, achieves the best accuracy rate through all varied
setups. It should be highlighted that the proposed solution ex-
ploits only audio signals, while competing methods rely on
integration of both audio and video data.

By observing the standard deviation (std) measure in Table I
it is shown that, unlike competing methods, the performance of
the proposed approach is barely affected by the change in the
acoustic environments. This high robustness can be related to

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on August 25,2025 at 18:20:39 UTC from IEEE Xplore.  Restrictions apply. 



IVRY et al.: VOICE ACTIVITY DETECTION FOR TRANSIENT NOISY ENVIRONMENT BASED ON DIFFUSION NETS 261

TABLE I
COMPARISON BETWEEN VOICE ACTIVITY DETECTION METHODS IN TERMS OF ACCURACY RATE, WITH RESPECT TO THE TP+TN (TRUE POSITIVE + TRUE

NEGATIVE) MEASURE THE RESULTS OF THE PROPOSED METHOD ARE HIGHLIGHTED

Fig. 4. Probability of detection versus probability of false alarm in an acous-
tic environment of babble noise with 10 dB SNR and keyboard transient
interferences.

the construction of intrinsic representations of the audio frames.
These representations do not consider the contents of transients
or background noises, but merely their intrinsic geometric pat-
terns. These patterns are unique for speech and non-speech audio
frames, which allows enhanced performance regardless of the
setup. The results presented in Table I show slight improve-
ment in comparison to the results presented in Section VI-A.
While in the former, 5 specific setups are inspected, 37 ad-
ditional setups are considered in the latter. This indicates the
existence of specific combinations of speech, stationary and
non-stationary noises that are harder to comprehend. Deeper
analysis of this phenomenon should be addressed in future
work.

To allow further evaluation, we employ the receiver operating
characteristic (ROC) curve. Three acoustic setups presented in
Table I are considered in Figs. 4–6. In each ROC curve, the real
time and batch proposed approaches are compared against four
competing voice activity detectors. Since the test set is identical
and balanced across all methods, a constructive comparison is
made by the ROC curves. The latter allows analysis of the rela-
tion between TP and TN, thus delivering information about the
trade-off between the two. It is worth noting that TN can be de-
rived from the false positive (FP) measure, held by the x axis, by
simply applying the relation TN = 1-FP. It can be observed that

Fig. 5. Probability of detection versus probability of false alarm in an acous-
tic environment of colored noise with 5 dB SNR and hammering transient
interferences.

our voice activity detector outperforms the competing methods
in a wide range of operating points.

C. Performance Analysis

This study presents a voice activity detection method that
reaches substantially higher accuracy results in comparison to
other state-of-the-art methods. This improvement can be at-
tributed to several novelties, where two of them are considered
the most influential. First, the integration of the DM method,
forced at the end of the encoder. Second, construction of two
separate DEDs, one trained with speech presence observations
and the second with speech absence observations. This section
is divided into two main parts. Initially, the differences between
two competing methods and the proposed approach are ana-
lyzed and theoretical explanations of the gap in accuracies are
given. Then, two experiments are conducted to establish these
explanations.

First, the method proposed in [12] is considered. In this
method, low-dimensional embedding is built with the DM
method, as done in our study. This embedding is constructed
by considering joint relations between speech and non-speech
features. However, our approach employs the DM method by
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Fig. 6. Probability of detection versus probability of false alarm in an acous-
tic environment of musical noise with 10 dB SNR and hammering transient
interferences.

considering relations between features of the same hypothesis
only. In order to evaluate the influence of this difference on
the degradation in performance, the algorithm proposed in [12]
has been implemented. Consequently, high overlap of speech
and non-speech embeddings in the diffusion space has been ob-
served. This method performs voice activity detection mainly
by modeling two low-dimensional Gaussian mixture models.
Meaning, this approach aims to separate speech from non-
speech coordinates by constructing a separator from a sum of
weighted exponential kernels. As a result, overlapped coordi-
nates are highly at risk to be misclassified.

Next, the method proposed in [21] is analyzed. In this
approach, a single auto-encoder attempts to learn the low-
dimensional embedding of both speech and non-speech frames.
As a result, joint embedding is shown to lead to high overlap
in the low-dimension, much like in the research conducted in
[12]. Additionally, this architecture does not consider the DM
method as a constraint on the embedded data, so dimension-
ality reduction is done automatically. This leads to a lack of
spatial information in the low-dimension and absence of geo-
metric insight. Ultimately, this causes significant overlap be-
tween low-dimensional representations and to deterioration in
performance. The high accuracy shown in [21] can be related
to high exploitation of temporal relations, carried by the RNN,
and integration of visual features in the classification process.
To explore the performance of the network without video, the
authors of this work implemented audio-only version of the
method presented in [21]. The outcome shows severe degrada-
tion in performance, as the average accuracy is 83% with respect
to all 5 setups considered in Table I.

Two experiments are conducted in order to validate the above
notions. First, the algorithms proposed in [12] and [21] are im-
plemented with merely audio data, as demonstrated in Fig. 7.
Accuracy rates of these methods are calculated by employing
different fractions of the full DED training set. For this par-
ticular experiment, the ratio of speech observations was fixed
to 50%, to achieve optimal results. Several interesting insights

Fig. 7. Accuracy rate percentage (TP+TN) of the proposed method using the
real-time mode and the methods presented in Dov et al. [12] and Ariav et al.
[21]. Performance is presented along a grid of different fractions of the full DED
training set, while the speech observations ratio is fixed to 50%.

can be obtained based on these outcomes. Primarily, there is a
substantial gap between performances when considering only
the audio data and neglecting visual features. Moreover, it is
noticeable that the method proposed in [21] is not affected as
much by the change in the amount of training observations. As
previously stated, the latter does not consider any geometric or
structural constraint on the embedded data. Therefore, as long
as the training observations are divided roughly equal between
hypotheses, their amount has lower significance. On the other
hand, the study presented in [12] highly relies on the intrinsic
structure of the data, i.e., the more training observations are
available, the better the joint relations between speech and non-
speech features are modeled. In this case, larger training set
leads to a more robust manifold construction.

In order to further explore the core of the advantages of
the proposed approach, another experiment is conducted. This
time, the studies in [12] and [21] are implemented by inte-
gration of several principles of this study. It should be noted
that the detection algorithm presented in each of these stud-
ies remains the same. In [12], the algorithm was altered such
that the low-dimensional coordinates are learned separately for
speech and non-speech frames before applying the Gaussian
mixture model on the generated manifolds. In [21], two separate
auto-encoders were implemented. Each auto-encoder learned
the low-dimensional mapping of speech and non-speech audio
frames independently. Also, the DM method was applied in a
similar manner to the proposed method in order to integrate
spatial information. The output of each encoder was inserted
into a separate RNN. The output of each RNN represents the
probability that a test observation is taken from a speech au-
dio frame. Ultimately, the probabilities of the two RNNs are
intersected and a prediction is made by a constructed decision
rule.

The results of this experiment are given in Fig. 8. For each
method, the accuracy is calculated along a grid of fractions of the
full DED training set, while the speech observations ratio is once
again set to 50%. Moreover, the performance of each method is
given once with its original implementation and once with the
improved implementation that combines principles from our
method. Regarding the studies presented in [12], [21], the ac-
curacies of the two new implementations significantly improve.
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Fig. 8. Accuracy rate percentage (TP+TN) of the studies presented in Dov
et al. [12] and Ariav et al. [21], along with the performance of the proposed
algorithm in the real-time mode. Accuracy is presented along a grid of different
fractions of the full DED training set, while the speech observations ratio is
fixed to 50%. Each of the two competing methods is implemented once in the
original form (marked ‘Orig’) and once with integration of concepts from the
proposed method (marked ‘Imp’).

Also, these models are less sensitive to changes in the size of
the DED training corpus.

Even though an increase in performance can be observed, the
studies presented in [12] and [21] still do not reach the results of
the proposed method. The core classification algorithm of each
of the three discussed methods remains unchanged through all
the comparative experiments conducted in this study. Therefore,
the core classification algorithm proposed in our study may be
responsible for the observed gap.

VII. CONCLUSION

In this work we have performed voice activity detection
with audio-based features. We separately represented the low-
dimensional geometric structures of speech and non-speech
frames by integrating the diffusion maps method with two in-
dependent, encoder-decoder based, deep neural networks. This
separation of speech from stationary noises and transients during
the training process of the two networks also led to high robust-
ness and generalization abilities, as well as low sensitivity to
the amount of available training data. The proposed method has
shown state-of-the-art results in a real time mode, and can be
integrated into dedicated communication systems. Nonetheless,
non stationary noises are still the main cause of false detection
in this research, due to their high varying nature. This challenge
may be addressed by employment of more distinctive geometric
features as well as assimilation of joint constraints between the
encoder and decoder. It would be instructive to further factorize
the proposed approach and analyze the improvement. Moreover,
a heuristic explanation regarding the relation between diffusion
maps and the presented method can be meaningful for further
understanding. One hypothesis, for instance, links between tran-
sition in time and on the transition map. Another theory suggests
that the corresponding Markov chain is a sequence of phonemes,
and the diffusion rate in the diffusion map corresponds to the
velocity of phonemes pronunciation. Additionally, the perfor-
mance of the proposed detection method in reverberant and
noisy acoustic environments with signal-to-noise ratios lower
than 0 dB, should be explored.
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