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ABSTRACT

Smartphone-based indoor localization methods are frequently employed for position estimation of users inside enclosures like malls, confer-
ences, and crowded venues. Existing solutions extensively use wireless technologies, like Wi-Fi, RFID, and magnetic sensing. However, these
approaches depend on the presence of active beacons and suitable mapping surveys of the deployed areas, which render them highly sensitive
to the local ambient field clutters. Thus, current localization systems often underperform. We embed small-volume and large-moment mag-
nets in pre-known locations and arrange them in specific geometric forms. Each constellation of magnets creates a super-structure pattern
of supervised magnetic signatures. These signatures constitute an unambiguous magnetic environment with respect to the moving sensor
carrier. The localization algorithm learns the unique patterns of the scattered magnets during training and detects them from the ongoing
streaming of data during localization. Our work innovates regarding two essential features: first, instead of relying on active magnetic trans-
mitters, we deploy passive permanent magnets that do not require a power supply. Second, we perform localization based on smartphone
motion rather than on static positioning of the magnetometer. Therefore, we present a novel and unique dynamic indoor localization method
combined with artificial intelligence (AI) techniques for post-processing. Experimental results have demonstrated localization accuracy of
95% with a resolution of less than 1m.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/9.0000076

INTRODUCTION mapping (SLAM). Moreover, in strong electromagnetic interfer-
ence environments, magnetic fields may differ from the fingerprints
causing potential localization errors.” The second method uses

external magnetic field transmitters, producing fields located by the

Localizing people inside buildings using smartphone sensors
draws increased interest. Common methods use RFID' or Wi-
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Fi.” Magnetism recently attracted considerable attention due to
its pervasiveness and autonomy.’ There are two main positioning
approaches utilizing magnetic sensors: identifying magnetic field
characteristics of the infrastructure signatures as locations finger-
prints,” and using active magnetic flux transmitters as markers.”
When using fingerprints, a magnetic map is built considering
magnetic anomalies as landmarks.® This scheme does not require
additional hardware deployment, while interferences and anoma-
lies from indoor building objects greatly improve magnetic field
discernibility.” Yet, this approach requires known magnetic maps
or massive calculation to build simultaneous localization and

smartphone magnetometer, regardless of existing building magnetic
fingerprints.® Generating the magnetic flux is energy consuming and
expensive transmitter units are required. Both approaches depend
either on active magnetic devices, or suitable mapping surveys of
the deployed areas, making them sensitive to local magnetic field
clutters.

We present a simple, low-power, robust smartphone localiza-
tion in unknown-magnetic-fingerprint locations by deploying an
array of permanent magnets in pre-known locations. By detect-
ing its unique magnetic signature using machine learning-based
algorithms, a passive localization method is obtained.
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As the proposed method is landmark-based, we draw com-
parisons to three competing state-of-the-art approaches for indoor
localization with landmark-based magnetism mechanisms are
covered in Ref. 3. Wang et al.® presented UnLoc, established on
landmarks matching. MapCraft, introduced by Xiao et al.,” is rooted
on the conditional random fields method. The IODetector from Li
et al.'’ used joint thresholds. For completion, we also refer to local-
ization methods based either on spatial-temporal sequence matching
or on fusion with motion.”

METHODOLOGY
Operating environment

Consider commercial buildings where many people carry
uncontrolled ferrous materials. The magnetic field is measured by
the cell-phones’ vector magnetometer. Magnetic clutter is present,
e.g., stationary magnetic gradients of the construction infrastructure,
distorting the natural magnetic flux and causing spoof localizations.
The infrastructure may contain large-scale electrically conductive
loops acting as sources of magnetic alternating transmissions.'' Fur-
thermore, moving ferrous objects create interference either from
inside the building (people carrying ferrous objects) or from out-
side (cars, trains). Finally, the cellphone itself generates clutter, both
by moving in the environmental field and from its uncontrolled
internal electrical currents.'!

Physical background

Ferromagnetic bodies create three-dimensional distortions of
the ambient Earth magnetic field. Usually, dipole approximation is
acceptable. Here, the anomaly magnetic flux decreases with inverse
proportion to the third power of the distance. The decay for the
magnetic field B is:

K-M
B= S (D), )

where K is a constant with range of 0.1-0.2, M the total magnetic
moment in Am?, and r is the dipole-to-sensor distance. Typical val-
ues of indoor background clutter (e.g., corridor surroundings) lie
around 10-20 uT, easily detectable by smartphone magnetometers
with common sensitivity of about 1uT. Generating patterns hav-
ing good signal-to-interference-ratios (SIRs), an induced field of
40-50 uT is required. By Eq. (1), for r between 0.5-1m, a mag-
net of 125Am? is required. Such devices exist: fixed neodymium
magnets, powerful mainly due to the tetragonal Nd,Fei4B crys-
tal structure, having exceptionally high uniaxial magneto-crystalline
anisotropy. The neodymium alloy is composed of microcrystalline
grains aligned in powerful magnetic fields during manufacture. The
resulting magnetic energy value is 18 times greater than “ordinary”
magnets by volume. This allows using small but very prominent
magnets as passive beacons or markers, producing the required sig-
nals. The magnetic field is three-dimensional and the phone sensor
can measure each one of its components.

Permanent magnets method

We embed small-volume-large-moment permanent magnets
in given locations inside the building and arrange them in specific
geometric configurations. This results in super-structure patterns
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of supervised magnetic signatures, constituting unambiguous mag-
netic environments. The localization algorithm learns these unique
patterns during a training stage and detects them from ongoing
data streaming during real-time localization: the test stage. Localiza-
tion is based on smartphone motion rather than on static positioning
of the magnetometer.

Each permanent magnet creates a dipole or a quadrupole,
depending on its geometry. The dipole creates non-uniform mag-
netic flux, resulting in magnetic fields that differ from the source
at every azimuth, and used to code the reference magnet. By
placing an array of magnets in different orientations, a coded mag-
netic field is created. A magnetic sensor passing along a path of
coded magnets can determine its unique position by matching the
pre-learned code.

Problem formulation

Let B:[n], By[n], and B.[n] respectively hold the nth sample of
the x,y, and z magnetic field components, processed with moving
time frames of N samples. Note Ql, Q;,, Ei € RPN the ith time frame
of the x, y, and z components. Denote the concatenated ith frame as
fi= (Bi,ﬁ;,ﬁ;) e RN, Assume two hypotheses for each frame f :

H, if the embedded magnetic pattern is absent and #; if it is present
in that frame. Define the following indicator I(f,):

_ 1, if fiE,H1.
H(f"){o, if f, eHo @

The goal is to correctly classify (f;) Vi.

Al-based models

We implement six Al-based algorithms with different mod-
eling mechanisms: two variations of support vector machine
(SVM),"? with and without principal components analysis (PCA)."
To efficiently perceive non-linear trends, a fully-connected deep
neural network (FC-DNN)'* was used with 4 hidden layers of 400
neurons each. Optimization was carried using Adam.'* These meth-
ods lack feedback information in their mechanisms, instructive
when dealing with time series modeling. Thus, a recurrent neural
network (RNN),'® a gated recurrent unit (GRU),"” and long-short
term memory (LSTM)'® networks are implemented.

EXPERIMENTAL SETUP
Apparatus

Measurements were collected using Xiaomi-mi4 smartphone
and the Sensor Kinetics Pro sensor acquisition application, which
recorded magnetic sensing information from the BOSCH magnetic
field sensor with sensitivity between 0-16004T, resolution of 0.3uT,
and power consumption of 0.5mA.

Settings

Experiments were conducted in four environments of differ-
ent intrinsic magnetic patterns. In each, the user strolled with the
smartphone in-pocket and recorded 30 minutes of data, comprising
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10 passes by the embedded magnetic pattern. To generate random-
ness, walking pace differed between 0.8-2 m/s and walking distance
ranged between 0.5-1m (Fig. 1).

The walking heading ranged between 0° and 360° while eleva-
tion remained unchanged. The magnets were positioned at height
of 1.5m and at distance of 3m from one another. The average SIR
was 8 dB.

Database, pre-processing, and features extraction

The data contained five signals: 3-axial magnetic signals, pitch,
and roll, notated By, By, B;, P, R, respectively. The magnetic norm, B,
was calculated to enhance the prominent energy of instilled magnets

(Fig. 2):
B=\/B}+B2+B2 (3)

We aimed to reduce dependency of measurements on the smart-
phone orientation. Thus, we generated the horizontal and vertical
magnetic components, B, and By, correspondingly:"’

By = —sin(P) - Bx + sin(R) - By + cos(P) - cos(R) - B;,  (4)
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FIG. 2. 3 minutes of magnetic norm recorded by the smartphone. The rectangular
borders the target magnetic signature, shown in zoom-in view.
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B, =\/B? - B ()

All magnetic signals sense prominent magnetic anomalies
around the magnets relative to the intrinsic magnetic environment.
While B expectedly captures the explicit target pattern, Bj, follows
the same behavior while being user-orientation-independent.

During pre-processing, rectangular windows of 12.5s with
80ms shift divided the data into frames, capturing the entire embed-
ded pattern in a single frame, while containing each target signature
multiple times. The database contains 72000 data frames.

We perform feature extraction from the time series mea-
surements to feed the AI with a compact and informative data.
The extended ith time frame is:

fi=(BL.B},BL. BB}, B, ) ¢ R",vie[1,72000].  (6)

Each signal component in f; is mapped to 20 features with
physical and statistical orientations. To facilitate temporal behav-
ior, each feature vector is concatenated to 2 feature vectors affili-
ated with 2 adjacent past time frames, resulting in 360 features per
time frame. Past look of 2 frames enhanced performance with-
out overconsuming computational load. Let FE(-) hold the fea-
ture extraction operator and denote X; € R3% a5 the feature vector
extracted from f;. For i > 2:

FE(B. ) FE(B) ), FE(BL), FE(B), FE(B,), FE(B, )
| FE(), (B ), FE(E ). Fo(B ) FE(E ), FE(EL),
re(5), (B %), FE(BE2), FE(B2), FE(B] ), FE(EL )
™)
Each feature vector is linked with a binary label y; € {0, 1}, indicating
magnetic signature.

Training and testing processes

We construct the training and testing datasets with a leave-
one-out methodology and perform four training-testing procedures.
The reported results correspond to the statistical mean of test accu-
racy over this 4-fold process.

RESULTS AND DISCUSSION
Al based magnetic localization

The localization performance (ROC) of the six AI algorithms
is shown in Fig. 3, allowing analysis of the trade-off between
true positive rate (TPR) and false-positive rate (FPR) in various
operation points.”’ The Long Short-Term Memory (LSTM) net-
work leads. Following the LSTM come GRU and RNN. Even though
they show degraded performance relative to the LSTM due to less
advanced temporal modeling, their architecture is leaner regard-
ing memory and computational load, being more adequate for on-
device applications. The least performant methods are the DNN and
SVM. LSTM shows 95% accuracy (based on Ref. 21), while GRU and
RNN reach 93% and 90%, respectively. DNN shows 85%, SVM-PCA
method reaches 80%, and SVM produces 75% accuracy. The superi-
ority of the LSTM over competing methods is explained as follows.
LSTMs are able to learn optimal time series context via feedback-
based learning for temporal classification, this context being pre-
specified and fixed in the DNN and SVM methods. Even though
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FIG. 3. Receiver operating characteristic (ROC) curve, comparing localization
performance of six Al-based methods. Zoom-in view is given.

the RNN employs feedback, it suffers short-term memory, pre-
venting it from modeling temporal context between early and late
periods. To mitigate this gap, the GRU and LSTM architectures

contain gate mechanisms that regulate information flow through the
network. While the GRU contains fewer parameters that require less
memory and training data, the LSTM embeds an additional mem-
ory unit inside its gate allowing enhanced control over information
flow.”

Comparison to competing methods

For performance evaluation, we employ the key metrics of
mean localization error (MLE) and classification accuracy.” These
metrics are sensitive to changes in test environments, so the fol-
lowing values are listed for reference only. UnLoc achieved MLE
between 1-2m and outperformed MapCraft. Both approaches show
lower performance compared to the proposed approach, localiz-
ing at maximal error of 1m. The IODetector was able to obtain
localization accuracy as high as 82% indoor, which falls short to
the 95% presented by the LSTM-based algorithm covered in this
study. Additional methods, rooted on spatial-temporal sequence
matching or on fusion with motion,’ also show lower MLE and
classification accuracy compared to our study.

Generalization and robustness

Additional experiments were conducted using the LSTM algo-
rithm to inspect generalization and robustness. First, localization
accuracy with respect to the walking pace of the carrier was ana-
lyzed, to verify our approach as applicable to real-life scenarios.
Walking paces were taken from the ensemble {0.8,1.2,1.6,2} m/s.
Performance analysis showed respective average localization accu-
racies of {94.5, 96.2, 95.6, 94}%. This evaluation stresses high
robustness of the proposed approach for slow and fast paces.
The optimal walking pace, in terms of maximal accuracy, is expected
to vary depending on the smartphone sampling rate, distance
between magnets, and carrier walking distance. Future work will
cover this extended analysis.

Localization should apply in intrinsic environments of low
SIR levels. While experiments dealt with 8dB SIR, we syntheti-
cally inspected the performance in SIRs ranging from 6dB to 0dB.
Results have shown that 6dB SIR barely affects the performance with
average degradation of less than 2% in accuracy, while 4dB SIR leads
to an accuracy of 88%, and 0dB SIR reaches 82%.

ARTICLE scitation.org/journall/adv

Another experiment synthetically decimated the resolution
of recordings to simulate CPU load. While measurements were
taken at 120Hz, 60Hz and 30% lead to 88% and 75% accuracy
respectively.

In practical scenarios, it is beneficial to record fewer shots
of the magnetic pattern during training to avoid inefficiency and
fatigue. Experiments showed that instead of crossing the magnetic
pattern 30 times in each of the 4 environments, 20 times
were sufficient for 90% accuracy, and 10 times provide accuracy of
80%.

These experiments point to the robustness of the LSTM
algorithm to dominant magnetic interference and lower amounts
of training data. It also emphasized the highly generalized mod-
eling the LSTM performs that enables it to identify the target
signature with missing information derived from impeded data
resolution.

CONCLUSION

A new low-power dynamic indoor localization method com-
bined with Al is presented. Passive permanent magnets are deployed
instead of active magnetic transmitters. The localization was per-
formed based on smartphone motion rather than on the static
positioning of the magnetometer. Among various Al schemes,
LSTM network showed leading performance of 95% accuracy.
Additional experiments point on the robustness of the LSTM algo-
rithm to dominant magnetic interference and lower amounts of
training data. These results are very promising regarding apply-
ing passive localization of a moving person in indoor environment.
For instance, it may be used for locating potential customers pass-
ing by a targeted area in a shopping mall or a store aisle. Further
refinement of this method will address specific magnets orientation,
pre-defined pattern positioning, and improved AI models to reach
higher accuracies.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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