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ABSTRACT
Residual-echo suppression (RES) systems suppress the echo
and preserve the speech from a mixture of the two. In hands-
free speech communication, RES may also be addressed as
a source separation (SS) or speech enhancement (SE) prob-
lem, where the echo can be manipulated as an interfering
speech signal. In this study, we fine-tune three pre-trained
deep learning-based systems originally designed for RES, SS,
and SE, and show that the best performing system for the task
of RES varies with respect to the acoustic conditions. Then,
we propose a real-time data-driven integration of these sys-
tems, where a neural network continuously tracks the system
that achieves the best performance during both single-talk and
double-talk periods. Experiments with 100 h of real and syn-
thetic data show that the integrated system outperforms each
individual system in terms of echo suppression and speech
distortion in various acoustic environments.

Index Terms— Acoustic echo cancellation, residual-echo
suppression, speech separation, speech enhancement, deep
learning.

1. INTRODUCTION

Hands-free speech communication often involves a conver-
sation between two speakers located at near-end and far-end
points. The near-end microphone captures the desired-speech
signal, echo produced by a loudspeaker playing the far-end
signal, and background noise. The acoustic coupling between
the loudspeaker and the microphone may lead to degraded
speech intelligibility in the far-end due to echo presence [1].
Numerous acoustic echo cancellation (AEC) systems were
proposed to reduce the echo of the far-end speaker’s speech
and preserve the near-end speaker [2]. However, echos are
often not eliminated by AEC systems and must be further re-
duced using residual-echo suppression (RES) systems.

RES can also be addressed as a speech separation (SS) [3]
or speech enhancement (SE) [4] problem, where the echo is
considered an interfering speech signal. In this study, we first
fine-tune three off-the-shelf deep-learning-based systems:
Our recently introduced RES system [5], a convolutional
time-domain audio separation network (Conv-TasNet) [6],
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Fig. 1: AEC scenario and proposed system integration.

and a denoiser develop by FacebookTM for SE [7]. We show
that the best-performing system of the three varies depending
on the speech, echo, and noise levels. Second, we propose
a real-time data-driven integration of these systems using a
deep neural network (NN) that continuously tracks the best
system based on single-talk and double-talk performance
measures. Experiments with 100 h of real and synthetic data
show that the integrated system achieves better performance
than each system in terms of echo cancellation and speech
distortion across various acoustic setups in both single-talk
and double-talk.

2. PROBLEM FORMULATION

Figure 1 depicts the AEC scenario and proposed system. Let
s (n) be the near-end speech signal and let x (n) be the far-end
speech signal, where n is the time index. The microphone sig-
nal m (n) is given by m (n) = s (n) + y (n) + w (n), where
w (n) represents additive environmental and system noises
and y (n) is a nonlinear and reverberant echo that is generated
from x (n). First, an AEC system receives m (n) as input and
x (n) as reference, and generates two signals: the echo esti-
mate ŷ (n), and the near-end signal estimate e (n) given by:

e (n) = m (n)− ŷ (n) (1)
= s (n) + (y (n)− ŷ (n)) + w (n) .

A succeeding system aims to cancel the residual echo by elim-
inating y (n)− ŷ (n), without distorting the speech s (n). The
NN continuously selects and enables the best out of the RES,
SS, and SE systems that interchangeably perform this task.
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3. PROPOSED DEEP INTEGRATION SYSTEM

We consider three systems that were originally constructed
and pre-trained for RES, SS, and SE. For RES, we employ an
extension of the system in [5]. It comprises a U-net [8] NN
that is fed with the short-time Fourier transform (STFT) [9]
amplitude of e (n), ŷ (n), and x (n), and aims to recover the
STFT amplitude of s (n). The objective function that is min-
imized during training is the mean squared error between the
NN prediction and s (n). The employed SS system is the
waveform-based Conv-TasNet [6]. It comprises an encoder
that maps the error mixture e (n) to a high-dimensional repre-
sentation, and a separation module that calculates a mask for
each speech source in the mixture, i.e., the near-end speech
and echo. Then, a decoder reconstructs the desired source
from the masked features. A 1-D convolutional autoencoder
[10] models the waveforms, and a temporal convolutional net-
work separation module [11] estimates the masks based on
the encoder output. The scale-invariant source-to-noise ratio
[12] is maximized during optimization, which is a modified
version of the standard signal-to-distortion ratio [13]. The SE
system that is applied is the waveform-based NN in [7] that
receives e (n) and aims to cancel the residual echo and noise
from it. The proposed model is based on an encoder-decoder
architecture with skip-connections [14]. It is optimized on
both time and frequency domains using multiple loss func-
tions. Namely, the `1 loss over the waveform together with a
multi-resolution STFT loss over the spectrogram magnitudes
are jointly minimized.

The proposed integrated system includes a deep NN that
receives the waveform representations of e (n), ŷ (n), and
m (n), and finds the best out of the RES, SS, and SE systems.
The training stage of the NN is done as follows. First, all
three pre-trained systems are fine-tuned separately and inde-
pendently with an identical training database. Then, a valida-
tion set is propagated via each fine-tuned system, and two per-
formance measures are extracted from each system. During
single-talk periods, the echo return loss enhancement (ERLE)
[15] is used. It measures echo reduction between the degraded
and enhanced signals when only a far-end signal and noise are
present and is given by 10 log10

[
‖e (n) ‖22/‖ŝ (n) ‖22

]
. Dur-

ing double-talk, the objective deep noise suppression mean
opinion score (DNSMOS) metric is used [16], which esti-
mates objective human ratings. In [17], the DNSMOS has
shown a strong correlation with echo suppression and speech
preservation measures for the task of RES during double-talk.
These measures are used to form a second training set as fol-
lows. Every time frame in the validation set is attached to
a new categorical label, N (n), from the set {1, 2, 3}, cor-
responding to the RES, SS, and SE systems. N (n) is as-
signed to the index of the system with the highest ERLE dur-
ing single-talk or highest DNSMOS during double-talk. This
new dataset is used for training the NN. The NN architecture
is waveform-based and follows the one in [18]. Still, its input

layer is extended to three channels instead of two, and its fi-
nal layer is concatenated to an additional softmax layer with
three output neurons. In real-time, unseen data are propagated
via the NN that yields the index estimate of the best system,
denoted by N̂ (n), and the respective fine-tuned system is en-
abled to execute RES.

The proposed NN contains 19 thousand parameters that
consume 520 Mflops and 42 KB of memory. Thus, its in-
tegration on hands-free devices is enabled, e.g., using the
NDP120 neural processor by SyntiantTM [19]. Timing con-
straints of hands-free communication on that processor are
also met [20]. The preceding AEC reduces linear echo with a
standard normalized least mean squares (NLMS) [21] adap-
tive filter with a filter length of 150 ms and step size of
3× 10−5.

4. EXPERIMENTAL SETUP

The AEC challenge database [22] is employed in this study.
This corpus is sampled at 16 kHz and includes single-talk and
double-talk periods, both with and without echo-path change.
No echo-path change means no movement in the room during
the recording, and echo-path change means either the near-
end speaker or the device is moving during the recording. The
corpus includes 25 h of synthetic data and 75 h of real clean
and noisy data. The speech-to-echo ratio (SER), speech-to-
noise ratio (SNR), and echo-to-noise ratio (ENR) levels were
distributed on [−20, 10] dB, [0, 40] dB, and [0, 40] dB, respec-
tively. These ratios are defined as:

SER = 10 log10
[
‖s (n) ‖22/‖y (n) ‖22

]
, (2)

SNR = 10 log10
[
‖s (n) ‖22/‖w (n) ‖22

]
, (3)

ENR = 10 log10
[
‖y (n) ‖22/‖w (n) ‖22

]
, (4)

and calculated with 50% overlapping time frames of 20 ms.
The 100 h of data is randomly split to create 80 h of train-

ing, 10 h of validation, and 10 h of test sets. Each set is di-
vided into 10 s segments that contain recordings in different
setups. This leads to frequent re-convergence during tran-
sitions between segments, both without and with echo-path
change. All sets are balanced to prevent a bias in the results,
as described in [5]. During fine-tuning, each system maintains
its original training configurations, but with an initial learning
rate of 10 times smaller. For the NN, the data pre-processing
follows [18], and the NN is trained with back-propagation
through time with a learning rate of 5× 10−4, mini-batch of
40 ms, and 20 epochs, using Adam optimizer [23]. The mini-
mized objective function is the categorical cross-entropy [24]
between the prediction and one-hot-vector encoding [25] of
the optimal-system index N (n). Training duration was typ-
ically 15 minutes per 10 h of data, and inference time was
12 ms per batch on an Intel Core i7-8700K CPU @ 3.7 GHz
with two GPUs of type Nvidia GeForce RTX 2080 Ti.
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Table 1: Performance with no echo-path change.

INT RES SS SE
DNSMOS 3.1±0.8 2.4±0.5 2.5±0.8 2.6±1.0

DSML 9.6±1.0 8.7±0.8 9.1±1.1 9.2±1.2
RESL 29.6±4.5 27.5±3.5 28.3±4.3 28.5±4.6
ERLE 33.1±1.6 32.5±2.0 32.2±1.7 32.1±1.4

Table 2: Performance with echo-path change.

INT RES SS SE
DNSMOS 2.4±0.5 1.8±0.3 2.0±0.6 2.1±0.6

DSML 9.2±0.7 8.4±0.6 8.8±0.7 8.9±0.8
RESL 27.0±3.0 25.3±2.5 25.7±3.0 25.8±3.2
ERLE 30.5±2.2 28.5±2.8 28.2±2.3 28.3±1.8

Table 3: Performance before linear AEC convergence.

INT RES SS SE
DNSMOS 2.1±0.2 1.7±0.2 1.8±0.3 1.9±0.3

DSML 7.6±1.1 7.1±0.7 7.2±0.9 7.4±1.1
RESL 24.2±4.4 22.5±3.0 22.8±3.5 23.0±4.4
ERLE 27.7±2.2 26.0±3.2 25.8±2.8 25.4±2.0

To separately measure echo suppression and speech dis-
tortion in double-talk, we respectively employ the recently in-
troduced residual-echo suppression level (RESL) and desired-
speech maintained level (DSML) [17]:

RESL = 10 log10
[
‖r (n) ‖22/‖g (n) r (n) ‖22

]
, (5)

DSML = 10 log10
[
‖s̃ (n) ‖22/‖s̃ (n)− g (n) s (n) ‖22

]
, (6)

where g (n) = ŝ (n) /e (n) is the time varying gain of the
NN, r (n) = e (n)− s (n) is the aligned noisy echo estimate,
and s̃ (n) = ĝ (n) s (n), where

ĝ (n) =
〈
g (n) s (n) , s (n)

〉
/‖s (n) ‖22 . (7)

The DNSMOS [16] is used again during double-talk to as-
sess speech quality for human perception. During single-talk,
the echo suppression level is quantified using the ERLE [15].
The DSML, RESL, and ERLE are calculated with 50% over-
lapping time frames of 20 ms, and the DNSMOS is applied
with the API provided by MicrosoftTM.

5. EXPERIMENTAL RESULTS

The integrated system, denoted as “INT”, is compared against
the particular RES, SS, and SE systems. In Tables 1–3, per-
formance measures are given with their mean and standard
deviation (std) values in the format mean±std. In Figures 2–
4, only the average values of the performance measures are
shown. For all the measures, higher mean and lower std in-
dicate better performance. Convergence of the linear AEC is
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Fig. 2: Comparison of the integrated system and individual
systems for segments with no echo-path change.

assumed if the normalized misalignment was lower than −10
dB for a given echo path [21]. The results are derived with
respect to the entire test set.

Results for no echo-path change are given in Table 1, and
for echo-path change are shown in Table 2, both after conver-
gence. In Table 3, results for no echo-path change before con-
vergence are reported. Comparing the RES, SS, and SE sys-
tems, we may conclude that the SE system obtains better aver-
age performance during double-talk periods in terms of echo
cancellation as shown by the RESL, desired-speech distortion
as shown by the DSML, and speech quality as demonstrated
by the DNSMOS. However, the SE system also obtains the
highest std values in double-talk, making it less stable than
competition. The RES system is favorable in single-talk echo
cancellation with a higher average ERLE, but is also the least
stable with the highest std value. These observations also hold
for echo-path change and pre-convergence scenarios, but with
an expected degradation in the values of all performance mea-
sures. Thus, neither the RES, SS, nor SE system is optimal
across all measures and acoustic scenarios in terms of higher
average performance and in terms of lower std values. The
proposed integrated system outperforms each individual sys-
tem on average across all measures and scenarios during both
single-talk and double-talk periods.

Average performance is also analyzed for various levels
of SER during double-talk and multiple levels of ENR during
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single-talk. Results for segments without and with echo-path
change are given in Figures 2 and 3, respectively, both after
convergence. Results for segments with no echo-path change
before convergence are shown in Figure 4. During double-
talk, the SE system outperforms the RES and SS systems
when SER levels are high, and the RES system is preferable
when SER levels are low. During single-talk, the RES system
obtains higher performance when ENR levels are high, and
the SE system is preferable for low levels of ENR. These ob-
servations remain across all measures and also for echo-path
change and pre-convergence scenarios, but again with an ex-
pected overall decrease on the average performance. These
results reaffirm that the best performing system varies with
speech, echo, and noise levels, and supports previous claims
that no individual system can be considered best under all
acoustic conditions.

A possible explanation for the behavior of the three sys-
tems with respect to acoustic conditions is suggested. The SE
system is better suited to handle high SER levels since the
noisy echo is significantly attenuated with respect to speech
and appears as a noisy interference. Similarly, as ENR de-
creases, the SE system is successful since the echo is mainly
screened by noise. The RES system is preferable when the
SER level is low, since it was trained to detect residual-echo
signatures that are mixed with speech. Likewise, when ENR
levels are high, the residual echo dominates the signal and can
be successfully recognized and suppressed by the RES sys-
tem. The proposed integrated system outperforms the RES,
SS, and SE systems across all speech, echo, and noise lev-
els, in both no echo-path change, echo-path change, and pre-
convergence scenarios. Based on the presented results, it can
be concluded that the proposed NN can estimate which sys-
tem is best in real-time for various acoustic conditions dur-
ing both single-talk and double-talk periods, and that the inte-
grated system is better on average than each of its three com-
ponents.

6. CONCLUSIONS

We have introduced a real-time data-driven system integra-
tion framework and applied it to the task of RES. This in-
tegration comprises three deep learning-based systems origi-
nally constructed and pre-trained for RES, SS, and SE. After
fine-tuning all three systems and showing that none of these
systems can be considered best for RES, we developed a deep
NN that continuously selects the best of the RES, SS, and SE
systems and enables it to perform RES. Using 100 h of real
and synthetic recordings, we showed that the NN can estimate
the best system in real time and that the proposed integrated
system outperforms, on average, each of the three individual
systems in terms of echo cancellation and speech distortion
during both single-talk and double-talk periods.
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Fig. 3: Comparison of the integrated system and individual
systems for segments with echo-path change.
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Fig. 4: Comparison of the integrated system and individual
systems for segments before the linear AEC convergence.
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