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Abstract

Speech quality, as evaluated by humans, is most accurately as-
sessed by subjective human ratings. The objective acoustic echo
cancellation mean opinion score (AECMOS) metric was re-
cently introduced and achieved high accuracy in predicting hu-
man perception during double-talk. Residual-echo suppression
(RES) systems, however, employ the signal-to-distortion ratio
(SDR) metric to quantify speech-quality in double-talk. In this
study, we focus on stereophonic acoustic echo cancellation, and
show that the stereo SDR (SSDR) poorly correlates with subjec-
tive human ratings according to the AECMOS, since the SSDR
is influenced by both distortion of desired speech and pres-
ence of residual-echo. We introduce a pair of objective metrics
that distinctly assess the stereo desired-speech maintained level
(SDSML) and stereo residual-echo suppression level (SRESL)
during double-talk. By employing a tunable RES system based
on deep learning and using 100 hours of real and simulated
recordings, the SDSML and SRESL metrics show high correla-
tion with the AECMOS across various setups. We also investi-
gate into how the design parameter governs the SDSML-SRESL
tradeoff, and harness this relation to allow optimal performance
for frequently-changing user demands in practical cases.

Index Terms: Residual-echo suppression, stereo echo cancella-
tion, objective metrics, perceptual speech quality, deep learning.

1. Introduction

A conversation between a pair of speakers, based in near-end
and far-end points, is common in hands-free communication.
The desired-speech captured by the near-end microphone can
be interrupted by echo, which is created by a loudspeaker that
emits nonlinearly-distorted version of the far-end signal that re-
verberates in the room, and by additional noises [1]. An acous-
tic coupling between the loudspeaker and the microphone po-
tentially occurs due to this echo presence, which impairs the
quality of acoustic information transmitted to the far-end [2].
In stereophonic acoustic echo cancellation (SAEC), the echo
paths between a pair of loudspeakers and a pair of microphones
are modeled by adaptive filtering. The echo paths are converted
into acoustic-echo approximations that are subtracted from the
microphones [3,4]. Double-talk segments are most challeng-
ing, since the echoes overlap with desired speech. Various stud-
ies tried to cope with it by preserving the speech and remov-
ing the echoes [5—12]. In practice, however, echo paths are not
estimated accurately, e.g., when the adaptive filter has not yet
converged [1]. Therefore, a residual-echo suppression (RES)
system must succeed the SAEC system to eliminate the echoes.

Subjective human evaluation is currently the most accurate
assessment of human perception for speech quality [13,14]. Re-
cently, an objective metric called the acoustic echo cancellation
mean opinion score (AECMOS) was introduced. In double-talk
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specifically, the AECMOS has obtained impressive accuracy in
estimating human ratings [15]. In contrast, RES systems con-
ventionally use the signal-to-distortion ratio (SDR) metric [16]
to assess speech quality in double-talk, e.g., in [17-24]. It will
be empirically shown that the stereo SDR (SSDR) is by defini-
tion influenced by both distortion of stereo speech and presence
of stereo residual-echo. Thus, for the task of RES in the stereo-
phonic case, the SSDR is not an adequate indicator of neither
the human evaluation for quality of speech nor of the AECMOS.
To combat it, we introduce a pair of objective met-
rics to distinctly assess the stereo desired-speech maintained
level (SDSML) and the stereo residual-echo suppression level
(SRESL) in double-talk. We first consider an RES system that
acts as a time-dependent gain, with a pair of input and out-
put channels. To calculate the SDSML, this gain is projected
into the stereo desired-speech and the result is substituted inside
the SSDR expression. The SRESL requires an estimate of the
noisy stereo residual-echo, achieved by subtracting the stereo
desired-speech from the double-talk frame. The ratio between
this estimate without and with the gain applied to it generates
the SRESL. The SDSML and SRESL metrics are evaluated with
an RES system, based on deep learning, which incorporates a
tunable design parameter. This study employs 100 h of record-
ings that comprise of real signals and of simulations in various
acoustic setups, with a range of echo and noise levels. Results
reveal the AECMOS is well correlated with the SDSML and
SRESL with high generalization to various scenarios. An ad-
ditional empirical study investigates how the design parameter
affects the tradeoff between the SDSML and SRESL. We then
show how varying the design parameter during training can ben-
efit interchangeable user demands of the RES system, which of-
ten occur in real-life. This study extends a recent work by the
authors, which address the monophonic AEC case [25].

2. Problem Formulation

The RES scenario in the stereophonic case is detailed in Fig-
ure 1. Here, bold letters notate vectors and matrices, and normal
letters notate scalars. The left and right near-end microphones
my (n) and mg (n) at time index n are respectively:

mi (n) =y (n) + sL(n) + w (n), e))
mg (n) = yr (n) + sr (n) +wr (), 2)

where si. (n) and sg (n) are the near-end speech signals, wi. (n)
and wg (n) represent environmental and system noises, and
yL (n) and ygr (n) are the nonlinear reverberant echo signals,
as correspondingly captured by the left and right microphones:

yL(n) = hEL (n) xnLe (n) + hl{L (n)xnLr (n),  (3)
yr (n) = hig (n) xxLL () + hgg () xair (R) . (4)
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Figure 1: RES scenario in the stereophonic case.

Here, xxi1 (1) and xnir (1) respectively denote the L last
samples of the left and right far-end signals, %1 (n) and xg (n),
after nonlinear distortions by nonideal hardware [26]:

s (n— L4+ D)7, (5)
,eNLr (n — L+ 1)]T (6)

and each of the column vectors hiy (n), hge (n), hir (n),
hgr (n) has L samples and represents a room impulse response
(RIR) from the loudspeakers to the microphones. Preliminary,
linear echo is reduced by employing the system in [27]. This
system receives my, (n) and mg (n) as inputs, and xr, (n) and
xr (n) as reference channels, and generates two pairs of sig-
nals: a pair of echo estimates ¢ (n) and gr (n), and a pair of
near-end speech signal estimates er. (n) and er (n), given by

XNL,L (ﬂ) = [$NL,L (n) e

XNL,R (n) = [l'NL,R (n) g

er (n) =mr (n) — g (n) @)
= (y. (n) — G (n)) + s (n) +wr (n),
ER()_mR()—yR() ®)
) —

= (yr (n) = 9r (1)) + sr (1) + wr (n).

The RES system aims to suppress the residual echoes, i.e.,
both y. (n) — g (n) and yr (n) — gr (n), without distorting
the desired-speech signals, i.e., s. (n) and sg (n).

3. The SDSML and SRESL Metrics

The SDSML and SRESL are developed by assuming a two-
input and two-output RES system that acts as a time-varying
gain matrix. The gain matrix in double-talk periods is given by

su(n) Je (n) i (n) Jex ()
5k (n) fer (n) §R<n>/eR<n>]’ ©)

where in double-talk er. (n) # 0 and er (n) # 0. Before in-
troducing the SDSML and SRESL definitions, we inspect the
shortcomings of the SSDR. Extending the traditional SDR def-
inition [16] to the stereophonic case, it follows that

g(n) =05 |3

Is (n) 113
SSDR =101 —_—
%810 s () = 3 () T L pouse 10
s (n) [13
=101 y
P10 s (n) — g (1) € (1) 113 | pouprecae
where
o= 3] s =[] o= 58] o0
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Both stereo desired-speech distortion and stereo residual-echo
presence influence the SSDR value. Since the SSDR employs
the term g (n) e (n), a scenario of distortion-free speech and
echo and a scenario of distorted speech without echo may pro-
duce an identical SSDR value. These scenarios, however, are
perceived differently by humans and present different AEC-
MOS values. It will be empirically shown that the SSDR
and subjective human perception are poorly matched according
to the AECMOS. Reliable evaluation of RES systems during
double-talk can be achieved by separating the quantification of
speech distortion from one of residual-echo suppression. Such
distinction is not provided by the AECMOS metric. Thus, a
pair of objective metrics is introduced by separately employ-
ing g (n) to the stereo desired-speech and to the noisy stereo
residual-echo estimate.

The SDSML definition is analogous to the SSDR, except
that g (n) is projected to the stereo desired-speech s (n) solely:

I8 () |13
$(n)—g(n)s(n) 3

Next, the noisy stereo residual-echo is evaluated as
r(n) = e(n) — s (n), and the SRESL is calculated by:

12)

SDSML = 10log;, E

Double-talk

SRESL = 101log, M 13)

(n)r(n) |3

It is noted that a constant attenuation may occur by the RES
system, which deviates the SDSML from its real value. The
SDSML must be unvaried by this attenuation, so it is being re-
stored as shown in [25]. Expressly, § (n) = g (n) s (n), where:

(g(n)s(n),s(n))
Ism)l3

4. A Tunable Stereophonic RES System

An RES system based on deep learning, inspired by [26], is
employed to assess the SDSML and SRESL metrics. It con-
tains six input channels, and two output channels and oper-
ates in the waveform domain. The proposed architecture is
comprised of blocks of nonlinear models (NLMs). Each NLM
comprises 3 gated recurrent units (GRUs) that contain 16 cells
each [28] and dropout [29] in the recurrent layers, an FCNN
with a two-neuron output, and a piecewise linear unit (PLU) ac-
tivation function with trainable parameters [30] that is applied
to each output neuron. The architecture is modeled by 3 con-
secutive NLMs. The first NLM receives the outputs of the lin-
ear SAEC system, i.e. g. (n), gr (n), eL (n), er (n), and the
two reference channels xi. (n) and xg (n), and emits two out-
put channels. The two succeeding NLMs are fed with four en-
trances each; a pair of output channels of the previous NLM,
and the two reference channels. The last NLM produces the
speech estimates §, (n) and 8g (n). A tunable design parameter
0 < a < 1, originally introduced in [31], controls an intrinsic
tradeoff that occurs inside a customized loss function J(«):

Double-talk

(14)

g(n)=

J(a) = a SDSML ™" +
I8 (n

1 —a)SRESL™"

“hﬂ) (M}l

TR

where during double-talk § (n),r (n) # 0 and O is a vector
of zeros. The parameter o« compromises between the SDSML

(15)



and SRESL values in the training stage while J(«) is mini-
mized. As a result, the stereo desired-speech distortion and
stereo residual-echo suppression levels that the system permits
can be adjusted dynamically. For instance, setting o = 1 forces
the stereo desired-speech prediction to coincide with its ground
truth. Shifting to a« = 0, however, focuses on suppressing
the stereo residual-echo, but causes a more substantial stereo
desired-speech distortion. Tuning a, i.e., tuning the SDSML-
SRESL tradeoff, can be done dynamically during training.

This RES system contains 23 thousand parameters that con-
sume 550 million floating-point operations per second (Mflops)
and 65 KB of memory. Its embedding on hands-free platforms
is thus feasible, e.g., by considering the NDP120 neural proces-
sor by Syntiant™ [32]. The preceding linear AEC system em-
ploys the sign-error normalized least mean squares (SNLMS)
adaptive filter in the sub-band domain [27].

5. Experimental Setup
5.1. Database

This study makes use of the AEC challenge database [33] that
is sampled at 16 kHz and incorporates English double-talk seg-
ments both with and without echo-paths change. In scenar-
ios of no echo-paths change, the near-end setup does not in-
clude movements. In scenarios of echo-paths change, how-
ever, the recording involves movement in the near-end, either
by the speaker or the device. This database contains 75 h of
real clean and noisy recordings and additional 25 h of syn-
thetic data, which are assigned to the original far-end source
signal r (n) and to the near-end speech and noise signals, where
st (n) = sk (n) and wr (n) = wg (n) in this study. To pro-
duce the far-end signals x. (n) and xg (n), r (n) is randomly
propagated via one of 4500 pairs of RIRs that generate g (n)
and gg (n), i.e., the acoustic paths between r (n) and the left
and right far-end microphones, respectively. To account for
realistic acoustic environments, xi (n) and xg (n) randomly
undergo one of 4500 artificial nonlinearities that confine with
practical characteristics of power amplifiers and loudspeakers
in modern hands-free devices [26]. Each pair of nonlinearly-
distorted far-end signals xn.. (n) and xnLgr (n) is randomly
propagated via one of 4500 foursomes of near-end RIRs. All
RIRs are generated using the Image Method [34] with L coeffi-
cients and reverberation times RTs0, where RTgo ~ U [0.2, 0.5]
seconds. The near-end stereo-speech-to-echo ratio (SSER)
and stereo-speech-to-noise ratio (SSNR) levels were dis-
tributed on [—10,10] dB and [0,40] dB, respectively,
and are defined as SSER=101og,, [||s (n) ||3/|ly (n) ||3] and
SSNR=10log;, [[|s (n) [|5/||w (n) ]3] in dB, where both
y (n) and w (n) follow the notations in eq. (11) and both ratios
are calculated with 50% overlapping time frames of 5 seconds.

5.2. Data Processing, Training, and Testing

The entire database is divided into 80 h of training, 10 h of
validation, and 10 h of test sets in a random manner. Bias
is averted by following conventions that balance all sets [31].
Since real-life scenarios often involve an abrupt change in the
echo paths, we simulate these to reoccur every ¢ seconds, where
t ~ U4,10], and set L = 2400. The NN is fed with 50%
overlapping time frames of 20 ms and is trained with a learning
rate of 10™* that decays by 107° every 5 epochs, mini-batch
size of 60 ms, and 40 epochs, using Adam optimizer [35] and
back-propagation through time. On average, training the RES
system lasted 25 minutes for every 10 h of data and inference
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Figure 2: Correlation of the AECMOS with the SDSML, SRESL,
and SSDR metrics.

took 8 ms per batch on an Intel Core 17-8700K CPU @ 3.7 GHz
with two GPUs of type Nvidia GeForce RTX 2080 Ti.

5.3. Additional Performance Metrics

Performance is also evaluated with the SSDR, which is influ-
enced by both echo presence and distortion of speech, and with
the perceptual evaluation of speech quality (PESQ) [36] be-
tween s (n) and § (n). The AECMOS is also reported, and is
calculated using the API provided by Microsoft as the average
between the AECMOS of §1. (n) and the AECMOS of §g (n).

6. Experimental Results

Results are reported on the test set. In Tables 1 and 2, both
mean and standard deviation (std) values are given. In Figure 4,
only mean values are shown. Higher mean and lower std values
entail better performance for all metrics. The linear filter con-
vergence confines with the description in [27,37]. We use 50%
overlapping time frames of 5 seconds for metrics calculations.
We employ the Pearson correlation coefficient (PCC) [38]
and Spearman’s rank correlation coefficient (SRCC) [39] to dis-
cover how much the SDSML and SRESL correlate with the
AECMOS, similarly to [15,40,41]. This experiment includes
segments both with and without echo-paths change after the lin-
ear SAEC system has converged for o = [0, 0.25,0.5,0.75, 1],
and the results are shown in Figure 2. The SSDR and AEC-
MOS are poorly correlated, as pointed out by the PCC and
SRCC mean values that fall below 0.26 for all «. However,
with average PCC and SRCC values between 0.8 and 0.89 for
all «, the proposed SDSML and SRESL metrics highly coor-
dinate with the AECMOS. Observing std values, the SDSML
and SRESL show more consistent correlations across « than the
SSDR. Figure 3 visualizes the AECMOS versus the SDSML,
SRESL, and SSDR metrics for random sample values drawn
from a ~ U [0.25,0.75] with no echo-paths change. The
low matching between the AECMOS and the SSDR and the
high correlation between the AECMOS and the SDSML and
SRESL are now verified. The SDSML and SRESL are there-
fore more indicative to subjective human perception of speech-
quality evaluation than the SSDR, according to the AECMOS.
In Tables 1 and 2 performance metrics are evaluated for
scenarios without and with echo-paths change, respectively, af-
ter convergence with a = [0, 0.5, 1]. The trend of the SDSML
and SRESL is consistent with the one of the SSDR, all of which
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Figure 3: Scatter plots of the AECMOS versus the SDSML,
SRESL, and SSDR metrics.

deteriorate in the transition from no echo-paths change to echo-
paths change periods. This consistency across various test set
setups indicates high generalization of the SDSML and SRESL.
The average SDSML values are regularly higher than the aver-
age SSDR values, as expected. This is directly derived from
eq. (10), in which the denominator takes into account both echo
and noise. As values of « increase, the average SDSML values
increase while the average SRESL values decrease, both with
and without echo-paths change, as expected.

We now explore how « governs the tradeoff between
the SDSML and SRESL. In Figure 4, results for no echo-
paths change periods after convergence are included, for
a =[0,0.25,0.5,0.75,1]. Lower « values relate to lower
SDSML values because distortion is higher for stereo speech.
The SRESL values rise, however, since more suppression is ap-
plied to the stereo residual-echo. Empirically, this tradeoff is
consistent on average for all . We also explore how practical
SSER and SSNR levels influence this tradeoff. As expected, the
more acoustic conditions degrade, the more the values of both
metrics are impaired. Also, regardless of acoustic conditions, it
is maintained that the lower o becomes, the lower the SDSML
and the higher SRESL values appear.

Practical user demands of the RES system may vary. Thus,
we propose a design scheme that addresses this dynamic need.
As an example, let us assume convergence has been achieved
and no echo-paths change occurs. This can be verified by fol-
lowing the definitions in [27,37]. Initially, the user requires an
average SRESL higher than 24.5 dB and an average SDSML
higher than 7.6 dB. They inspect Figure 4 and select aw = 0.75.
At some point, the user concludes that SSER = 0 dB and
SSNR = 20 dB, e.g., by respectively analyzing double-talk and
near-end single-talk periods. Thus, they demand a SDSML no
lower than 7.4 dB with a maximal SRESL. Again, the user fol-
lows Figure 4 and decides to shift o« = 0.75 to o = 0.5 during
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Table 1: Performance with no echo-paths change.

e SDSML SRESL SSDR

0 6.15+0.6 29.6+3.3 4.55+£0.9
0.5 7.38+0.6 26.4+3.4 5.52+0.8

1 8.13+0.5 23.1+3.8 6.73£0.7

Table 2: Performance with echo-paths change.

« SDSML SRESL SSDR
0 5.41+1.1 24.343.5 3.61+1.4
0.5 6.29+1.0 21.7£4.0 4.60+1.2
1 7.01+£0.8 18.9+4.9 5.54+1.0
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Figure 4: SDSML-SRESL tradeoff for various values of c.

training. Indeed, this lowers the average SDSML to 7.45 dB and
enhances the average SRESL to over 26.5 dB. Note that the con-
clusions in this section also hold for the mono AEC case [25].

7. Conclusions

We focused on the task of RES in the stereophonic case dur-
ing double-talk. We first showed that the widely-used SSDR
metric poorly correlates with human speech-quality ratings. We
then proposed a pair of objective measures that distinct between
desired-speech distortion and residual-echo suppression during
double-talk. By considering a deep RES system with a tunable
parameter o, we showed that the SDSML and SRESL corre-
late well with the AECMOS metric, which may render they are
more appropriate to assess quality of speech. Also, by tun-
ing « during training, we offered a practical design scheme
that allows flexible adjustment of the RES system to a specific
SDSML-SRESL tradeoff. A sequential study will focus on en-
hancing subjective experience for RES systems during double-
talk periods by optimizing the AECMOS through tuning of a.
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