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Smartphones have become a popular tool for indoor localization and position estimation of users. Existing solutions mainly employ
Wi-Fi, RFID, and magnetic sensing techniques to track movements in crowded venues. These are highly sensitive to magnetic clutters
and depend on local ambient magnetic fields, which frequently degrades their performance. Also, these techniques often require pre-
known mapping surveys of the area, or the presence of active beacons, which are not always available. We embed small-volume and
large-moment magnets in pre-known locations and arrange them in specific geometric constellations that create magnetic superstructure
patterns of supervised magnetic signatures. These signatures constitute an unambiguous magnetic environment with respect to the
moving sensor carrier. The localization algorithm learns the unique patterns of the scattered magnets during training and detects them
from the ongoing streaming of data during localization. Our contribution is twofold. First, we deploy passive permanent magnets that
do not require a power supply, in contrast to active magnetic transmitters. Second, we perform localization based on smartphone motion
rather than on static positioning of the magnetometer. In our previous study, we considered a single superstructure pattern. Here, we
present an extended version of that algorithm for multi-superstructure localization, which covers a broader localization area of the user.
Experimental results demonstrate localization accuracy of 95% with a mean localization error of less than 1m using artificial intelligence.

Index Terms—Magnetic landmarks, indoor localization, smartphone-based localization, artificial intelligence.

. INTRODUCTION

ocalization of users indoor has drawn increased interest,

with popular methods employ RFID [1] and Wi-Fi [2]
techniques. However, magnetic sensors-based approaches
recently attracted considerable attention due to their
pervasiveness and autonomy [3]. These sensors are mostly
utilized in one of two forms: to identify magnetic field
characteristics of the infrastructure signatures as locations
fingerprints [4], and to employ active magnetic flux transmitters
as markers [5].

When using fingerprints, a magnetic map is built by
considering magnetic anomalies as landmarks [6]. Thus, the
more magnetic inference and anomalies are present, the more
enhanced discernability of the magnetic field is achieved.
However, pre-known magnetic surveys are required, and
simultaneous localization and mapping (SLAM) pose
computational burden. Moreover, the fingerprints scheme is
highly sensitive to strong electromagnetic interference
environments, in which potential localization errors may
frequently occur [7]. The second method uses external magnetic
field transmitters that produce magnetic signals recorded by the
smartphone magnetometer, regardless of existing building
magnetic fingerprints [8]. Yet, magnetic flux generation is
energy consuming and expensive transmitter units are
demanded. Both approaches depend on either active magnetic
devices, or suitable mapping surveys of the deployed areas,
which renders them sensitive to local magnetic field clutters.

We present a simple, low power, and robust smartphone-
based localization in unknown-magnetic-fingerprint indoor
locations. We consider a permanent magnets-array that
comprises of 3 magnets arranged in a row. We deploy all 6
possible permutations of this array in pre-known locations
while preserving the orientation of the magnets. By detecting

the unique magnetic signature of each of the 6 patterns using
artificial intelligence (Al) algorithms, a passive localization
method is obtained.

As the proposed method is landmark-based, we draw
comparisons to three competing state-of-the-art approaches for
indoor localization  with  landmark-based  magnetism
mechanisms, which are covered in [3]. Wang et al. [8] presented
UnLoc, established on landmarks matching. MapCraft,
introduced by Xiao et al. [9], is rooted on the conditional
random-fields method. The I0ODetector from Li et al. [10] used
joint thresholds. For completion, we also refer to localization
methods based either on spatial-temporal sequence matching or
on fusion with motion [3].

Il. METHODOLOGY
A. Operating Environment

Consider commercial buildings where many people carry
uncontrolled ferrous materials. The magnetic field is measured
by the vector magnetometer in the smartphone. Magnetic clutter
is present, e.g., stationary magnetic gradients of the
construction infrastructure, distorting the natural magnetic flux
and causing spoof localizations. The infrastructure may contain
large-scale electrically conductive loops acting as sources of
magnetic alternating transmissions [11]. Furthermore, moving
ferrous objects create interference either from inside the
building (people carrying ferrous objects) or from outside (cars,
trains). Finally, the smartphone itself generates clutter, both by
moving in the environmental field and from its uncontrolled
internal electrical currents [11].

B. Physical Background

Ferromagnetic bodies have the property to deform the
ambient magnetic field recorded by the sensor. The signal shape



depends on the trajectory of the object, the magnetic moment of
the ferromagnetic object, and its position relative to the position
of the sensor. The three-axial components of the field
By, B, and B, are given by [11]:
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WhEre X = Xgensor — Xobject IS the X-axis distance between the
sensor and object (same for y and z), R is the norm distance
between the sensor and the object, M,., M,,, and M, are the axial
moment components, and , is magnetic permeability. Usually,
dipole approximation is acceptable. Here, the anomaly
magnetic flux decreases with inverse proportion to the third
power of R. Namely, the decay of the magnetic field norm B is:
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where p, is the magnetic constant, K is a constant with range of
0.1-0.2 and M is the total magnetic moment in Am?. Typical
values of indoor background clutter (e.g. corridor surroundings)
lie around 10-20uT, easily detectable by smartphone
magnetometers with common sensitivity of about 1uT. To
generate patterns with high signal-to-interference-ratio (SIR),
an induced field of 40-50uT is required. Following Eq. (2), for
R between 0.5-1m, a magnet of 125Am? is required. Such
devices exist: fixed neodymium magnets, which are powerful
mainly due to the tetragonal Nd.Fe14B crystal structure, having
exceptionally high uniaxial magneto-crystalline anisotropy.
These magnets are made from magnetic material combining an
alloy of neodymium, iron, and boron to form the Nd.Fe:sB
structure. To increase the performance of both neodymium and
samarium cobalt magnets, traces of additional earth elements
such as dysprosium (Dy) and praseodymium (Pr) are added.
Then, by considering neodymium magnets with geometric
dimensions of 30 x 30 x 50mm and a grade of N35, the
magnets produce a Gauss rating of 5,500 over 7,800 times
stronger than that produced by the Earth at its magnetic poles.
This allows using small but very prominent magnets as passive
beacons or markers, producing the required signals. The
magnetic field is three-dimensional, and the phone sensor can
measure each one of its components.

C. Multiclass Permanent Magnets Method

We embed small-volume-large-moment permanent magnets
in different locations inside the building and arrange them in
specific geometric configurations. Practically, we consider 3
neodymium magnets arranged in a row, and embed each of their
6 possible permutations in different locations, without changing
their orientation. This results in super-structure patterns of
supervised magnetic signatures, constituting unambiguous
magnetic environments. The localization algorithm learns these
unique patterns during a training stage and detects them from
ongoing data streaming during real-time localization, i.e., the
testing stage. Localization is based on smartphone motion
rather than on static positioning of the magnetometer. Each of

the 3 permanent magnets can be approximated by a dipole or a
quadrupole, depending on its geometry. These dipoles change
the orientation of the flux lines of the Earth magnetic field,
creating a unique pattern that can be tuned by ordering the array
of magnets in different permutations. A magnetic sensor
passing along a path of coded magnets can determine its unique
position by matching the pre-learned code. In our previous
work [12], we considered a single superstructure, which limits
the localization area of the algorithms. In this study, we extend
this work by considering 6 distinct patterns, allowing us to
cover a broader area in which the user is localized.

D. Problem Formulation

Let B,(n),B,(n),B,(n) denote the three-axial magnetic
signals recorded by the smartphone, where n € N, is a discrete
time index. These signals are processed with overlapping time
frame of length N. We denote f; = [B., B}, B{| € R™3V as the
extended ith time frame that contains concatenation of the ith
frame of each axis signal. Assume 7 hypotheses for each frame
£, notated {#,, ..., Hs}. The hypothesis #, represents frames
that do not contain any part of a superstructure magnet. The
hypothesis H;, represent frames that include a part of the
superstructure magnet j, where j € [1,6]. The goal of this study
is to correctly identify the hypothesis of each frame.

E. Al-based Models

We implement 6 Al-based algorithms with different
modeling mechanisms: two variations of support vector
machine (SVM) [13], with and without principal components
analysis (PCA) [14]. To efficiently perceive non-linear trends,
a fully connected deep neural network (DNN) [15] was used
with four hidden layers of 400 neurons each. These methods
lack feedback information in their mechanisms, which is
instructive when dealing with time series modeling. Thus, a
recurrent neural network (RNN) [16], a gated recurrent unit
(GRU) [17], and long-short term memory (LSTM) [18]
networks are also implemented.

I1l. EXPERIMENTAL SETUP

A. Apparatus

Measurements were collected using Xiaomi-mi4 smartphone
and the Sensor Kinetics Pro sensor acquisition application,
which recorded magnetic sensing information from the BOSCH
magnetic field sensor with sensitivity between 0-1600uT,
resolution of 0.3uT, and power consumption of 0.5mA.

B. Settings

Experiments were conducted in different locations for the
training stage and for the test stage. For the training stage, a
shielded environment of negligible magnetic interference was
considered, with an average norm field power lower than
0.5uT. In this setup, each of the 6 superstructures was recorded
by passing by it with the smartphone 30 times. For the test stage,
4 indoor environments of different intrinsic magnetic patterns
were considered. In each of them, the user recorded 60 minutes
of data, comprising 10 passes by each of the embedded
magnetic patterns. In both training and test recordings, the user
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Fig. 1. Norm value of the three-axial magnetic field recorded by the smartphone
along 40 seconds, with an average SIR level of 8dB. The confined patterns are
recorded as the user crosses the same magnetic superstructure with different
orientations between the smartphone and the superstructure. The unconfined
recordings capture inherent fingerprints of the indoor environment.

strolled with the smartphone in-pocket in walking paces that
differs between 0.8-2m/s and walking distances that ranged

between 0.5-1m from the superstructures. The smartphone
heading azimuth, i.e., its orientation, ranged between 0° and
360°, while elevation remained unchanged. The magnets were
positioned at height of 1.5m and were separated by 3m from
one another. The test recordings were performed with an
average SIR level of 8dB, where SIR is defined as the power
ratio between those frames that contain a superstructure pattern
and those which do not. SIR and power calculations were
calculated using 50% overlapping time frames of 20ms. More
specifically, the constellation of magnets was comprised of one
unit of 3 attached magnets, one unit of 2 attached magnets, and
one unit of a single magnet. In each of the 6 pattern
combinations, these 3 separate units were arranged in a row 3m
from each other, and their relative orientations remained
unchanged [12].

The contribution of learning the superstructures in a shielded
environment using various device orientations is depicted in
Fig. 1 and Fig. 2. Fig. 1 illustrates the effect of the orientation
between the smartphone and the magnetic superstructure on the
recorded superstructure pattern. Substantial variations are
shown between two snippets of the same superstructure, due to
device orientation change. Thus, learning recordings of the
magnetic superstructures from different device orientations is
highly instructive. Also, Fig. 2 shows another magnetic
superstructure that was recorded in the training shielded
environment on one hand, and in the testing environment on the
other hand, with an identical smartphone orientation. The
training setup produces a clear pattern that can be learned by
the algorithm and later detected in the noisy test environment.

C. Database, Pre-processing, and Features Extraction

The data recorded from the smartphone contained five
signals: the 3-axial magnetic signals, pitch, and roll, notated
B,,B,,B,, P, and R, respectively. The magnetic norm, B, was
calculated to enhance the prominent energy of instilled
magnets:
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Fig. 2 Norm value of the three-axial magnetic field recorded by the smartphone
along 20 seconds. The same superstructure is recorded with the same
orientation between the smartphone and the superstructure, in two different
locations: in the shielded training environment, and in noisy indoor
environment (right) with an average SIR level of 8dB.

B= [B2+B2+B2. 3)

We aimed to reduce dependency of measurements on the
smartphone orientation. Thus, we generated the horizontal and
vertical magnetic components, B, and B,,, respectively [19]:

B, = —sin(P) - B, + sin(R) - By, + cos(P) - cos(R) - B,, (4)

B, =+/B?—BZ. (5)

All magnetic signals sense prominent magnetic anomalies
around the magnets relative to the intrinsic magnetic
environment. While B expectedly captures the explicit target
pattern, B, follows the same behavior while being user-
orientation-independent. During pre-processing, rectangular
windows of N = 12.5s with 80ms shift divided the data into
frames, capturing the entire embedded pattern in a single frame,
while containing each superstructure multiple times. The
training database contains 150k data frames and the test
database contains 100k data frames, both are constructed as
detailed in Section 111(B). We perform feature extraction from
the time series measurements to feed the different Al methods
with a compact and informative data representation. The
extended ith time frame is given by:

fi = |BL B}, Bl B, Bl,Bi] € RV . (6)

Each one of the 6 signal components in f; is mapped to 20
identical features with physical and statistical orientations. To
facilitate temporal behavior, each feature vector is concatenated
to 2 feature vectors affiliated with 2 adjacent past time frames,
resulting in 20 X 6 x 3 = 360 features per time frame. Past
look of 2 frames enhanced performance without overconsuming
computational load. Formally, let FE(-) hold the feature

extraction operator and denote %; € R'*360 as the feature
vector extracted from f;. Then, for i > 2:
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Fig. 3. ROC curve comparison between the performance of all 6 Al-based
models for indoor localization. Zoom-in view is attached.
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Fig. 4. ROC curve comparison between the performance of the LSTM model
in various SIR levels, from 0dB to 8dB. Zoom-in view is attached.

FE(BY),FE(BL),FE(B)), FE(BY), FE(B}), FE(BY),
%; = |FE(BS™Y), FE(BLY), FE(BIY), FE(BYY), FE(BiY), FE(BI™),|. (7)
FE(BL™?),FE(BL2), FE(BL™), FE(B™2), FE(B{™?), FE(BI™?)

Each feature vector %; is linked with a multiclass label y; € {0,
6}, where labels 1 to 6 represent the 6 different superstructures,
and 0 represents the absence of a superstructure in that frame.

D. Training, Validation, and Testing Processes

During training, the Al models learn to identify and
distinguish between the 6 superstructures. Also, 80% of the
training set is used to train the models, and 20% is used for
validation. If the validation accuracy does not increase after 5
epochs, the training process is stopped, and the model is
declared optimal. This was done by minimizing the cross-
entropy loss function between the Al model output and label,
with the Adam optimizer [20]. The batch size used was 64
frames, the learning rate varied between 0.0005 to 0.001,
depending on the Al model used. The testing is done by feeding
the trained Al models with the test set features. The output of
each test frame is compared against its ground truth label, and
performance measures are derived.
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Fig. 5. ROC curve comparison between the performance of the LSTM model
in degraded conditions of decimated smartphone resolution. The most degraded
scenario inspects sample frequency that is 6 times lower than the original
maximum rate. Zoom-in view is attached.
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Fig. 6. ROC curve comparison between the performance of the LSTM model
in various few-shot learning scenarios during training. It ranges between using
only 5 shots up to 30 shots from each of the superstructures during training.
Zoome-in view is attached.

IV. RESULTS AND DISCUSSION

A. Al-based Magnetic Localization

The localization performance of the 6 Al algorithms is shown
in Fig. 3 using the receiver operating characteristic (ROC)
curve, allowing analysis of the trade-off between true positive
rate (TPR) and false-positive rate (FPR) in various system
operation points [21]. The long short-term memory (LSTM)
network leads in localization performance, followed by the
GRU and RNN. Even though they show degraded performance
relative to the LSTM due to less advanced temporal modeling,
the GRU and RNN architectures allows lower memory
consumption and computational load, being more adequate for
on-device applications. The least performant methods are the
DNN and SVM. We define the localization accuracy as the
maximal TPR + true negative rate (TNR) [22]. LSTM shows
95% accuracy, while GRU and RNN reach 92% and 90%,
respectively. DNN shows 83%, SVM-PCA method reaches
nearly 80%, and SVM produces 73% accuracy. The superiority
of the LSTM over competing methods is explained as follows.
LSTMs can learn optimal time series context via feedback-
based learning for temporal classification, this context being
pre-specified and fixed in the DNN and SVM methods. Even
though the RNN employs feedback, it suffers short-term
memory, preventing it from modeling temporal context
between early and late periods. To mitigate this gap, the GRU



and LSTM architectures contain gate mechanisms that regulate
information flow through the network. While the GRU contains
fewer parameters that require less memory and training data,
the LSTM embeds an additional memory unit inside its gate
allowing enhanced control over information flow [23].

B. Comparison to Competing Methods

For performance evaluation, we employ the key metrics of
mean localization error (MLE) [3] and localization accuracy
[22], which is employed in Section 1VV(A). These metrics are
sensitive to changes in test environments, so the following
values are listed for reference only. UnLoc achieved MLE
between 1-2m and outperformed MapCraft. Both approaches
show lower performance compared to the proposed approach,
localizing at maximal error of 1m. The IODetector was able to
obtain localization accuracy as high as 82% indoor, which falls
short to the 95% presented by the LSTM-based algorithm used
in this study. Additional methods rooted on spatial-temporal
sequence matching or on fusion with motion [3], also show
lower MLE and classification accuracy compared to our study.

C. Generalization and Robustness

Additional experiments were conducted using the leading
LSTM algorithm to check the generalization and robustness of
the proposed localization method. First, localization accuracy
with respect to the walking pace of the carrier was analyzed, to
verify if our approach is applicable to real-life scenarios where
walking paces vary. Walking paces were taken from the
ensemble {0.8, 1.2, 1.6, 2} m/s. Performance analysis showed
respective average localization accuracies of {94.1, 96, 95.3,
93.5} %. This evaluation exhibits a high robustness of the
proposed approach for both slow and fast paces. The optimal
walking pace, in terms of maximal accuracy, is expected to vary
depending on the smartphone sampling rate, distance between
magnets, and carrier walking distance. Localization should also
apply in intrinsic environments of low SIR levels. While
experiments dealt with 8dB SIR, we synthetically inspected the
performance in SIRs ranging from 6dB to 0dB by decreasing
the energy of frames that contained magnetic superstructures.
Fig. 4 shows these results. 6dB SIR barely affects the
performance with average degradation of less than 2.5% in
accuracy, while 4dB SIR leads to an accuracy of 86%, and 0dB
SIR reduces the accuracy to 80.5%. Another experiment
synthetically decimated the resolution of test recordings to
simulate CPU load, which cannot always be compensated, e.g.,
using interpolation, during real-time on-device usage. Results
are illustrated in Fig. 5. While training measurements were
taken at 120Hz, lower sample frequencies of the test set of 60Hz
and 30Hz, lead to 86% and 73.5% accuracy, respectively. It
emphasizes the highly generalized modeling of the LSTM
scheme that enables it to identify the target signature with
missing information derived from impeded data resolution. In
practical scenarios, it is beneficial to record fewer shots of the
magnetic pattern during training to allow quick and efficient
system re-appliance. As showed in Fig. 6, instead of crossing
every magnetic superstructure 30 times, 20 training snippets
were sufficient for nearly 90% accuracy, and 10 crosses provide

accuracy of nearly 80% accuracy. These experiments
demonstrate the robustness of the LSTM algorithm to dominant
magnetic interference even with lower amounts of training data.
Lastly, we note that the achieved performance may be affected
by the inherent measurement error of the smartphone,
mentioned in Section I(A). Future research will involve a
more extensive comparison between recording devices with
different resolutions and their effect on localization accuracy.

V. CONCLUSION

In this study, low-power dynamic indoor localization method
combined with Al is presented. Passive permanent magnets are
deployed instead of active magnetic transmitters. The
localization was performed based on smartphone motion rather
than on the static positioning of the magnetometer. Inspired by
our latest work that considered a single magnetic pattern, this
work is extended to a multi-class problem of 6 different patterns
allowing a broader area of user localization. Among various Al
schemes, the LSTM network showed leading performance of
95% accuracy. More experiments point to the generalization
and robustness of the LSTM algorithm regarding high magnetic
interference and lower amounts of training data. These results
are very promising regarding applying passive localization of a
moving person in indoor environment. For instance, it may be
used for locating potential customers passing by a targeted area
in a shopping mall or a store aisle. Further refinement of this
method will address specific magnets orientations and
improved Al models to reach a more enhanced performance.

REFERENCES

[1] L.Yang,Y.Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram: Real-
time tracking of mobile RFID tags to high precision using COTS
devices,” in Proc. 20th Annual International Conference on Mobile
Computing and Networking, pp. 237-248, 2014.

[2] X. Shixiong, L. Yi, Y. Guan, Z. Mingjun, and W. Zhaohui, “Indoor
fingerprint positioning based on Wi-Fi: An overview,” ISPRS Int. J. Geo-
Information vol. 6, no. 5, 2017.

[3] S. He and K. G. Shin, “Geomagnetism for smartphone-based indoor
localization: Challenges, advances, and comparisons,” ACM Comput.
Surv., Vol. 50, no. 1, 2018.

[4] H. Xie, T. Gu, X. Tao, H. Ye, and J. Lu, “A reliability-augmented particle
filter for magnetic fingerprinting based indoor localization on
smartphone,” IEEE Trans.Mob. Comput., vol. 15, no. 8, pp. 1877-1892,
2016.

[5] K. Watanabe et al., “A smartphone 3D positioning method using a
spinning magnet marker,” J. Inf. Process., vol. 27, pp. 10-24, 2019.

[6] Q. Wang, H. Luo, F. Zhao, and W. Shao, “An indoor self-localization
algorithm using the calibration of the online magnetic fingerprints and
indoor landmarks,” in Proc. International Conference on Indoor
Positioning and Indoor Navigation (IPIN), pp. 1-8, 2016.

[71 C. Gao and R. Harle, “Sequence-based magnetic loop closures for
automated signal surveying,” in Proc. International Conference on
Indoor Positioning and Indoor Navigation (IPIN), pp. 1-12, 2015.

[8] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R.
Choudhury, “No need to war-drive: Unsupervised indoor localization,” in
Proc. MobiSys’12: 10th International Conference on Mobile Systems,
Applications and Services, 2012.

[91 Z. Xiao, H. Wen, A. Markham, and N. Trigoni, “Lightweight map
matching for indoor localization using conditional random fields”, 2014.

[10] M. Li, P. Zhou, Y. Zheng, Z. Li, and G. Shen, “IODetector: A generic
service for indoor/outdoor detection,” ACM Trans. Sen. Netw., vol. 11,
no. 1, 2015.

[11] E. Weiss and R. Alimi, “Low-Power and High-Sensitivity Magnetic
Sensors and Systems,” Artech House, 2018.



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

E. Fisher, A. Ivry, R. Alimi, and E. Weiss, “Smartphone based indoor
localization using permanent magnets and artificial intelligence for
pattern recognition, ” AIP Advances, vol. 11, no. 1, 2021.

J. A. K. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural Process. Lett., vol. 9, no.3, pp. 293-300,
1999.

S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemom. Intell. Lab. Syst., vol. 2, no. 1, pp. 37-52, 1987.

T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, long
short-term memory, fully connected deep neural networks,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4580-4584, 2015.

Z.C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel, “Learning to diagnose
with LSTM recurrent neural networks,” arXiv:1511.03677, 2015.

R. Dey and F. M. Salemt, “Gate-variants of gated recurrent unit (GRU)
neural networks,” in Proc. International Midwest Symposium on Circuits
and Systems (MWSCAS), pp. 1597-1600, 2017.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681, 1997.

B. Li, T. Gallagher, A. G. Dempster, and C. Rizos, “How feasible is the
use of magnetic field alone for indoor positioning?,” in Proc.
International Conference on Indoor Positioning and Indoor Navigation
(IPIN), pp.1-9, 2012.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

J. N. Mandrekar, “Receiver operating characteristic curve in diagnostic
test assessment,” J. Thorac. Oncol., vol. 5, no. 9, pp. 1315-1316, 2010.
A. R. Henderson, “Assessing test accuracy and its clinical consequences:
A primer for receiver operating characteristic curve analysis,” Ann. Clin.
Biochem., vol. 30, no. 6, pp. 521-539, 1993.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,”
arXiv:1412.3555, 2014.



