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Abstract—Modern magnetic sensor arrays conventionally use state-of-the-art low-power magnetometers such as parallel
and orthogonal fluxgates. Low-power fluxgates tend to have large Barkhausen jumps that appear as a dc jump in the
fluxgate output. This phenomenon deteriorates the signal fidelity and effectively increases the internal sensor noise. Even
if sensors that are more prone to dc jumps can be screened out during production, the conventional noise measurement
does not always catch the dc jumps because of their sparsity. Moreover, dc jumps persist in almost all the sensor cores
although at a slower but still intolerable rate. Even if dc jumps could be easily detected in a shielded environment, when
deployed in the presence of natural noise and clutter, it can be hard to positively detect them. This letter fills this gap and
presents algorithms that distinguish dc jumps embedded in natural magnetic field data. To improve resistance to noise, we
developed two machine-learning algorithms that employ temporal and statistical physical-based features of a preacquired
and well-known experimental dataset. The first algorithm employs a support vector machine classifier, while the second
is based on a neural network architecture. We compare these new approaches to a more classical kernel-based method.
To that purpose, the receiver operating characteristic curve is generated, which allows diagnosis ability of the different
classifiers by comparing their performances across various operation points. The accuracy of the machine-learning-based
algorithms over the classic method and the rapid convergence of the corresponding receiver operating characteristic
curves are demonstrated.

Index Terms—Magnetic instruments, barkhausen jumps detection, deep learning, machine learning, magnetometers, support vector
machine.

I. INTRODUCTION

Fluxgate magnetometers are induction sensors employing a soft
magnetic core which is periodically saturated [Ripka 2001]. There are
two main types of fluxgates: a parallel fluxgate [Janosek 2017] where
the core is excited by magnetic field parallel to the measured field, and
an orthogonal fluxgate [Butta 2017] where it is orthogonal. Parallel
fluxgate cores are excited by a bipolar magnetic field where orthogonal
fluxgates [Primdahl 1979] are modulated by a unipolar field [Paperno
2004].

When employing a sensor array, it is important to maintain low-
power consumption. However, it is known that the internal noise
increases when decreasing the fluxgate excitation field [Musmann
2010]. As a result, the fluxgate core does not undergo deep and uni-
form saturation [Weiss 2014] and the magnetization of the core is
inhomogeneous. As a result, low-power fluxgates tend to suffer from
dc jumps in their output.

A physical description of jumps in the output of low-power fluxgates
is first introduced by Weiss [2018]. We have shown that because of
the low-saturation excitation field, some magnetic domains are tem-
porarily “stuck” in the one magnetization direction. They are stuck
on metallurgical imperfections in the lattice [Weiss 2014], whereas
the rest of the core domains continue in periodical rotations. The
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“stuck” domains disturb the effective permeability of the core, which
is translated to a rapid change in fluxgate sensitivity. An experimen-
tally physical model for the dc jumps based on an expansion of the
Landau–Lifshitz–Gilbert equation and an expansion to include the
core excitation dynamics have been already presented [Weiss 2019].
Regardless of the physical origin of dc jumps, from a practical, ap-
plicable point of view [Alimi 2009], we believe that it is crucial to
be able not only to detect, but also to distinguish dc jumps from very
similar signal patterns. These patterns have to be treated based on
the specific application and cannot be confused with the Barkhausen
phenomenon.

A dc jump in the fluxgate output deteriorates the signal fidelity
and effectively increases the internal sensor noise. The dc jump is a
steplike phenomenon with a sparse and stochastic pattern, as illustrated
in Fig. 1.

Sensors that are more prone to dc jumps can be screened during
production by performing internal noise measurement in a magneti-
cally shielded chamber and employing either an entropy detector or
kernel-based methods to detect the dc jumps. However, the conven-
tional noise measurement does not always catch the dc jump because
of its sparsity. Nevertheless, dc jumps persist in almost all the sensor
cores although at a slower rate [Weiss 2019]. As a result, low-power
consuming fluxgates cannot be utilized to their full potential because
their output is afflicted with dc jumps that severely impede their per-
formance.

In applications such as surveillance systems, dc jumps can com-
promise both detection and localization of relevant signals. They are
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Fig. 1. Magnetic noise in low-power parallel fluxgate magnetometer
with a dc jump (samples 230–240) and two other clutter-based anoma-
lies that bear high resemblance to dc jump.

well described in Alimi [2009, 2015]. See also the work of Kozick
[2008]. Another field of application is the magnetic localization of
wireless capsule endoscopy where unwanted dc changes can induce
large localization errors. See for instance the work of Pham [2014].

Although dc jumps are easily detected in a shielded environment,
when deployed in an environment of natural noise and clutter, they
are difficult to be positively detected. In this letter, we bridge this gap
and present algorithms that distinguish dc jumps embedded in natural
magnetic field measurements. This is important because it improves
the sensors’ signal fidelity and enables a more precise and performant
characterization of the signal.

This letter is organized as follows. Section II describes three de-
tection algorithms that we have developed. Section III presents an
experimental setting from which the database was created, the setup
design, and the training process of the algorithms. In Section IV, we
discuss the results, and Section V concludes this letter.

II. DETECTION ALGORITHMS

In this letter, we draw comparisons between three algorithms for dc
jumps detection. These algorithms can be divided into two groups: a
classic kernel-based method and learning-based algorithms.

A. Kernel-Based Method

This classic approach is based on the low-ordered statistical nature
of the signal and is inspired by Canny’s edge detector [Canny 1986],
now reduced to one dimension. Here, a template matching process is
employed in the time domain between a dedicated kernel and the mag-
netic measurements. This template then undergoes statistical analysis,
in which anomalies are detected. In this letter, we employ a detection
kernel K (n, σ ), which is the derivative of a Gaussian with variance σ 2

and zero mean. Tweaking the parameter σ controls the sharpness of
jumps this method can detect. To better grasp the core of this method,
let us lay out the following intuitive concept; if σ is very small, only
extremely sharp changes in the signal are laid out from the rest of the
signal. On the other hand, jumps spread across relatively large number
of samples may bear high resemblance to other parts of the template,
which calls for large values of σ to obtain high performance.

B. Support Vector Machine

Since the kernel-based method relies on empirical parametric op-
timization, it suffers from high sensitivity to noise. The proposed
learning-based support vector machine method (SVM) [Cortes 1995]

deals with this issue by generating a classifier that exploits nine tem-
poral and physical features of the measured magnetic signals.

The research of magnetic signals in this letter revealed that linear
operations cannot transfer one type of signal (e.g., jump) to the second
type of signal. Namely, there are nonlinear relations between the two.
Thus, in order to distinguish between them, one must derive nonlinear
relations from the measurements and establish the classifier on them.

C. Artificial Neural Network

Even though SVM can produce generalizing and robust models to
a degree, its ability to handle highly complex relations is limited by its
single nonlinearity modeling (parabolic, radial, etc.). This drawback
leads to unsatisfactory robustness and calls for deep learning solu-
tions. In this letter, we design a three-layered artificial neural network
(ANN), with 12 neurons in each hidden layer [Ciresan 2012]. The fea-
tures used for the SVM remain unchanged, and they are inserted into
an input layer comprised of nine neurons. The output layer produces
a 1-bit indicator for the presence of jumps. The activation function in
the end of each neuron is the rectifier linear unit [Nair 2010] function.

On the other hand, the strength of the ANN can be its “Achiles heel”
and causes overfitting. To overcome that, we add both a regulariza-
tion term to the objective function and employ the dropout technique
[Srivastava 2014]. The former limits the values of the parameters in
the network and maintains them to a low dynamic range. The latter
effectively reduces the number of neurons used in the training pro-
cess of the network, so the model can be parameterized with fewer
coefficients. Formally, let the training set be the matrix Ftr ∈ R

m×10.
It comprises m training measurements, where each contains nine fea-
tures and a 1-bit label that indicates whether this measurement is truly
a jump or not. Also, let us notate the nonlinear output of the network as
Znet(f tr

i ) ∈ {0, 1}, where f tr
i = [ f tr

i1 , . . . , f tr
i9 ] is the i th input feature

vector to the ANN and 1 ≤ i ≤ m. Therefore, the objective function
J (F, w) can be defined as

J (F, w) =
m∑

i=1

∥∥Znet

(
f tr

i

) − f 2
i,10

∥∥ + λ

N∑

n=1

w2
n (1)

where N is the number of parameters in the ANN, w = [w1, . . . , wN ]
is the vector that contains their values, and λ is a strictly positive
number that controls the weight of the regularization term. Let us
establish the following optimization problem to be solved:

Cnet = argminw∈RN J (F, w) . (2)

So, the following mapping is applied by the trained network on a
given feature vector f = [ f1, . . . , f9]:

Cnet (f ) =
{

jump, if Znet ( f ) = 1

not jump, if Znet ( f ) = 0.
(3)

III. EXPERIMENTAL SETTINGS

A. Apparatus

Data were acquired from an array of 24 Bartington’s Mag648
magnetometers [Bartington Instruments 2011] of parallel three-axial
fluxgate operating with a bipolar excitation. The sensor sensitivity
is 50 mV/µT, and the typical internal noise density is smaller than
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Table 1. Features description.

20 pT/
√

Hz at 1 Hz. They were digitized by a dedicated 24-bit data
acquisition and sampled at a rate of 10 Hz.

B. Database and Features

We divide the database into three different categories: training set,
evaluation set, and test set, containing 600, 100, and 100 mag-
netic measurements correspondingly. Every measurement includes
450 samples, and all sets are balanced, in the sense that they com-
prise the same number of jumps and nonjumps sequences. Also, for
each sequence of 800, we attach a 1-bit label of 0 or 1, which indicates
the absence or presence of a jump in that sequence, respectively.

Formally, let us notate the set of sequences as {si }M
i=1 ∈ R

450 and
their corresponding label set as {�i }M

i=1 ∈ {0, 1}, where M = 800. For
each measurement si , we perform a feature extraction process, and
obtain a nine-dimensional vector f i ∈ R

9. Now, the set {f i , �i }M
i=1 ∈

R
10 is the sole information to be carried out and inserted into the

different algorithms. This database goes through a feature extraction
process that includes two types of features: statistical features and
temporal features, where the latter is always casual in order to avoid
system delay. The features are described in detail in Table 1, and they
are numbered in descending order according to their contribution to
the test accuracy.

Before concluding this section, an important remark is to be made.
Although the output of this vector fluxgates consists of three time-

dependent signals, each for one spatial direction of the magnetic field,
we decided not to use any feature that involves obvious correlations
between the three signals. The reason is that when an array of sen-
sors is utilized, all sensors axes must be aligned in order to be able
to perform gradiometric analysis. Sensor axes’ alignment can be per-
formed by digital alignment of the three measured axes. The rotation
matrix, which is different for each sensor in the array, is calculated
by implementing a tilt-compensated electronic compass (also called
“eCompass”). The full procedure and mathematics are described in
Ozyagcilar [2013]. However, this compensation results in mixing of
the “pure” original fluxgate vector components data. Each axis sig-
nal is now a linear combination of the original signals. Therefore,
although a dc jump should appear in only one axis at a time, due to
the rotation matrix operation, it might be present now in one, two, or
even three axes at the same time. Therefore, we cannot consider the
appearance of the dc jump in one axis at a time as a reasonable feature
to employ. This feature, which could have helped us to discriminate
dc jumps from another event that intrinsically involves more than one
axis, becomes irrelevant.

C. Training Process

The kernel-based method is optimized, and the width of the kernel
is chosen as σ = 2 · Fs , where Fs is the sample frequency. This op-
timization is done via the training set, validated with the evaluation
set, and tested on the test set. The tradeoff that facilitates this outcome
is between distinguishing jumps from noise, which occurs as σ de-
creases, and avoid mixing the statistical nature of noise in the decision
rule, which may occur when σ increases.

The learning-based models go through optimization that comprise
two stages: the training process in which the parameters of the model
are localized inside a narrow grid of values, and an evaluation stage,
which neat picks the best parameter set. While the SVM training
process is done in a traditional manner, the ANN training process is
worth describing in detail for future use of the reader. The network is
initialized with weights drawn from a centered Gaussian distribution
with variance of 0.01. It should be noticed that pretraining is not done
in this work, and since the network is considered small, local minima
is obviated with high probability. Optimization is employed by back-
propagation through time, done by the classic gradient descent method.
The parameters of the backpropagation are the learning rate of 10−2

and momentum of 0.9. The cost function is proportional to the �2

norm with regularization term, weighted by λ = 10−2. The network
was trained until either 150 epochs or minimum gradient value of
10−6 were achieved. The results given in this letter always regard the
objective test set, never seen before by the models.

IV. RESULTS AND DISCUSSION

First, we investigate the difficulty of the kernel-based method to
cope with a cluttered environment. That is, we compare the perfor-
mance of this method in both shielded and noisy, cluttered setups.
Next, we wish to compare between the kernel-based and learning-
based methods. Thus, we test all three approaches in a real-world
cluttered environment. The results of these two experiments are il-
lustrated by the receiver operating curve (ROC). This curve allows
us to examine a range of false positive rates, and their corresponding
probabilities of detection. This tradeoff is commonly used in detection
systems, and quantitatively differs from the true negative versus false
negative relation. Also, the SVM and ANN are tested head-to-head in
two manners. First, we wish to deduce how well these methods handle
low signal-to-noise ratios (SNRs), which project on their robustness
abilities. For that purpose, we decrease the value of SNR from 15 to
0 dB while exploiting the entire training and evaluation sets. For each
SNR value, we report the value that maximizes the summation of the
true positive (TP) and true negative (TN) measures. This value is es-
sentially the maximal accuracy rate. Second, we decrease the amount
of training and evaluation sets size while keeping their ratio unchanged
and maintaining a level of 15 dB SNR. The target of this experiment
is to inspect the generalization property of the learning-based meth-
ods. The same measure of TP + TN is extracted as in the previous
experiment for each of the two approaches.

Additionally, we wish to examine the contribution of each of the
nine features to the performance of the algorithm. Here, we fix the
conditions to 15 dB SNR and full amount of training and evaluation
sets sizes. Then, for each of the two learning-based (and thus, feature-
based) approaches, we perform the entire training, evaluation, and test
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Fig. 2. ROC of kernel method in shielded and cluttered environ-
ment (left-hand side), and the three detection methods in cluttered
environment.

processes with increasing number of features, in a cumulative manner.
Explicitly, we employ merely one feature, then two features, and so on,
until we converge to the performance reported in the first experiment
where we used all nine features. It should be highlighted that for

each number of features 1 ≤ n ≤ 9, we performed ( 9
n ) experiments.

For each experiment, the reported result is the one that generated
the maximal accuracy. Again, the measure used here is TP + TN.
By observing Fig. 2, we can conclude that the classic kernel-based
method performs well when merely the internal noise of the sensor is
of presence. However, when higher levels of noise and clutter are of
presence, the ability of this method to cope with dc jumps detection is
poor and cannot be considered sufficient for a reasonable application,
which motivated the learning-based methods.

In continuation, we illustrate the advantages of the learning-based
methods in Fig. 2. Initially, one can observe an enhanced performance
of the latter in comparison to the kernel-based method. This improve-
ment projects on both the high generalization and the robustness abil-
ities that the learning-based methods possess, and the kernel-based
method lacks. By focusing on the learning-based methods, we can
spot the rapid convergence of the ANN against the SVM. Namely, the
ANN produces a better separating model, which was expected due to
the ability of deep learning methods to model highly complex nonlin-
ear relations of data, whereas the SVM is restricted to shallower and
more limited nonlinear patterns.

To compare the two learning-based methods in a more profound
way, we observe the results of two experiments, demonstrated in the
top and middle graphs in Fig. 3. In the former, we notice that the
lower the SNR, the worse the SVM method can cope and perform.
This indicates the enhanced robustness that the ANN brings, which
can be affiliated with the large number of perceptron units and the
contribution of each of them for the end-to-end nonlinear model of
the network. In the latter, the power of the ANN is again revealed,
now regarding the desired generalization property, i.e., the ability
to perform well on unseen data efficiently. Due to the dropout and
regularization techniques we applied during training to yield the ANN
model, the latter can extract the intrinsic properties of the training data
instead of wasting coefficients and model the noise. Therefore, while
a low amount of training data causes the SVM to learn the trend of the
noise, the ANN is able to neglect it and lower the influence of noise
on the dc jumps detection performance.

Fig. 3. Accuracies (TP+TN) of the detection methods versus different
values of SNR (top), fractions of full-sized training set used for training
(middle), and subsets of features used for training (bottom).

Eventually, an interesting conclusion can be deduced based on the
bottom graph in Fig. 3. The x-axis ticks label Li , 1 ≤ i ≤ 9, represents
the subset of features from f1 to fi , which are used for training and
evaluation. First, only four out of nine features are enough to yield
90% accuracy for the ANN: correlation with step function, correlation
with the dedicated kernel K (n, σ ), correlation to previous time frames,
and kurtosis. However, to reach this accuracy, the SVM exploits all
nine features. Also, both learning-based methods experience similar
rate of increase in accuracy regarding the cumulative feature analysis.
This is expected, since these methods essentially attempt to minimize
a similar optimization problem.

V. CONCLUSION

In this letter, we have performed dc jumps detection with three
methods, fed by physical, statistical, and temporal features. We have
shown that the classic kernel-based approach cannot comprehend
the nonshielded environment and demonstrated the enhanced abili-
ties of the learning-based methods in detecting dc jumps when high
levels of noise and clutter are present. We performed dedicated exper-
iments to analyze the robustness and generalization properties of the
SVM- and ANN-based approaches. We deduced that the deep ANN
architecture is able to cope with low levels of SNR, with relatively
small amount of data seen during training. Conclusively, the ANN-
based detection system has low sensitivity to the low signal fidelity and
high levels of inherent noise caused by the Barkhausen phenomenon.
Future work will involve implementation of the suggested detection
methods in an online platform that employs magnetic sensing.
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