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ABSTRACT

State-of-the-art deep-learning-based voice activity detec-
tors (VADs) are often trained with anechoic data. However,
real acoustic environments are generally reverberant, which
causes the performance to significantly deteriorate. To mit-
igate this mismatch between training data and real data, we
simulate an augmented training set that contains nearly five
million utterances. This extension comprises of anechoic
utterances and their reverberant modifications, generated by
convolutions of the anechoic utterances with a variety of room
impulse responses (RIRs). We consider five different mod-
els to generate RIRs, and five different VADs that are trained
with the augmented training set. We test all trained systems in
three different real reverberant environments. Experimental
results show 20% increase on average in accuracy, precision
and recall for all detectors and response models, compared
to anechoic training. Furthermore, one of the RIR models
consistently yields better performance than the other mod-
els, for all the tested VADs. Additionally, one of the VADs
consistently outperformed the other VADs in all experiments.

Index Terms— Voice activity detection, reverberation,
room impulse response, deep learning

1. INTRODUCTION

Voice activity detection (VAD) aims to determine the bound-
aries in which speech exists in an observed audio signal.
State-of-the-art deep-learning-based VADs are often trained
with anechoic data. However, real-life acoustic environ-
ments are reverberant, which deteriorates VAD performance
in practical scenarios. In this study, we mitigate the mismatch
between training data and real data by generating an aug-
mented training set that integrates anechoic and reverberant
audio signals. The reverberant training corpus is generated by
convolving anechoic utterances with simulated room impulse
responses (RIRs). Enhanced VAD in reverberant environ-
ments may benefit a variety of audio-based applications such
as speech enhancement [1-3], dereverberation [4, 5] and
speech and speaker recognition [6, 7].
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Deep-learning-based VADs have attained leading per-
formances during recent years, due to the ability of neural
networks to learn non-linear relations and complex patterns
of audio signals. To detect voice activity, Ariav and Cohen [8]
encoded spectral audio features via an auto-encoder that fed
a recurrent neural network. Wagner et al. [9] introduced au-
tomatic feature engineering through the convolutional layers
of a deep neural network. Leading performance was obtained
by Kim and Hahn [10] that integrated an attention model to
weight context information into existing deep learning archi-
tectures. Combined end-to-end VAD system was introduced
by Ariav et al. [11], that comprised of WaveNet for feature
extraction and a deep residual network for speech detection.
Ivry et al. [12] applied ensemble learning with two deep
encoder-decoder structures to learn the unique temporal and
spatial patterns of speech through the diffusion maps method.

In latest decades, several RIR models were proposed to
produce reverberant utterances via simulations. An extension
of the known image method [13] to arbitrary polyhedra was
first introduced by Borish [14]. Vorlidnder [15] suggested a
combined modeling that considers both the image method and
ray-tracing techniques. Rindel [16] employed reflection coef-
ficients that are incidence angle-dependent in the frequency
domain, to offer a more accurate characterization of a room
response. A similar model was implemented by Lam [17],
but it focused on low frequencies for more realistic boundary
conditions. Valeau et al. [18] applied the diffusion equation
to predict room acoustics.

We consider the aforementioned five deep-learning-based
VADs [8-12] and five RIR models [14-18]. First, we show
that training these detectors with solely anechoic corpus and
testing them in real reverberant rooms and spaces leads to a
significantly impeded detection capability. To include unique
patterns and acoustic features of reverberant data during train-
ing, we generated an augmented training set of nearly five
million utterances. This extended corpus comprises of ane-
choic and reverberant signals, where the latter is generated
by convolving the anechoic signals with a variety of RIRs,
generated using a fixed RIR model. Then, all five VADs are
independently trained with this augmented training set. This
experiment is repeated for each of the five RIR models. All
trained detection systems are tested in three real reverberant
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spaces of a classroom, a large concert hall, and an octagon
shaped library. Experimental results demonstrate that the per-
formance of all detectors is enhanced in each of the tested
reverberant environments, regardless of the RIR model em-
ployed during training. Evaluation measures such as accu-
racy, precision and recall increase by 20% on average, com-
pared to non-reverberant training. An interesting outcome
shows in each of the tested setups, the leading accuracy of
each detector was consistently achieved by the Valeau RIR
model [18]. In a similar manner, the detector introduced in
Ivry [12] prevailed competing VADs across all experiments.

The remainder of this paper is organized as follows. In
Section 2, we describe the database. In Section 3, experimen-
tal results are given. We conclude in Section 4.

2. DATABASE GENERATION

In this section, we detail the construction of two disjoint
datasets: An augmented training set and a test set. The train-
ing set contains both anechoic and reverberant utterances,
that are generated by simulating a fixed RIR model and con-
volving the anechoic data with it. In contrast, the test set is
constructed with real reverberant conditions, not simulations.

For the training stage, we employ the TIMIT [19] train-
ing dataset that contains 4620 anechoic utterances, sampled
at 16 kHz. Since this corpus is imbalanced and does not
comprise of noises, we perform several preprocessing steps.
Initially, since in TIMIT there are more speech frames than
silence frames, we manually add 2 s of silence for each
existing recording in the corpus. Next, we acquire record-
ings of stationary noises such as white and colored Gaussian
noise, musical instruments and babble. These noises are
randomly added to both speech and silence frames in signal-
to-noise-ratios (SNRs) that are distributed uniformly between
10-20 dB relative to clean anechoic speech.

We perform augmentation of this anechoic training set, so
it holds both anechoic and simulated reverberant data. To sim-
ulate varied reverberant environments, 50 rectangular spaces
are considered, such that the length, width and height are uni-
formly chosen from the range 3 — 20 m. This permits both
small, medium and large spaces. To cover various scenarios,
each of the 50 spaces is simulated 20 times, with different
locations of the speaker and the receiver. To obtain a real-
istic setting, the speaker and the microphone are limited to
height range of 1 — 2 m, and a distance of at least 0.5 m from
each other. Each room is simulated with a reverberation time
(RT60) that is chosen uniformly from the interval 0.1 — 1 s,
such that both low and high reflective surfaces are accounted
for.

Given an RIR model, we simulate 50 x 20 RIR signals.
Each of these responses is convolved with the anechoic utter-
ances in [19], which results in a reverberant training set. The
augmented training set is simply a composition of the original
anechoic signals with their aforementioned reverberant mod-
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ifications. Ultimately, for a given RIR model, the training set
comprises of 4620 x 1001 utterances.

In the test stage, we use 100 anechoic utterances from the
TIMIT test dataset. To obtain the reverberant test set, convo-
lution is applied between this corpus and real recordings of
room responses. These RIRs are taken from three reverberant
environments [20] of a classroom, a large concert hall and an
octagon shaped library. For each environment, 130 recordings
are available, from various locations in the room. Thus, three
test sets are formed, each comprises of 100 x 130 reverberant
utterances.

3. EXPERIMENTAL RESULTS

In the following experiments, voice activity detection perfor-
mance is evaluated by several measures. The receiver oper-
ating characteristic (ROC) curve is used to present a trade-
off between speech detection and false-alarm rates in various
operation points. The robustness of the VAD and the sensi-
tivity of its classifier to noises is derived by the area under
curve (AUC) measure. Accuracy, precision, recall and F1-
score [21] are also employed in this study. When combined,
all measures strongly indicate on the accuracy, generalization
and robustness abilities of the detector.

In this study, we consider five VADs [8—12] and address
them as Ariav-R, Wagner, Kim, Ariav-W and Ivry, respec-
tively. Also, we employ five RIR models [14—18], and refer
them as Borish, Vorldnder, Randel, Lam and Valeau, corre-
spondingly. We perform the following experiment, comprises
of two-stages; training stage and test stage. In the first part,
a fixed RIR model is simulated. Then, the steps described
in Section 2 are implemented with respect to the chosen RIR
model. As a result, an augmented training set is obtained.
Next, a VAD system is chosen and trained with the derived
training set. We repeat this experiment for each VAD sys-
tem and for each RIR model. Ultimately, this stage yields
5 x b trained VAD systems. In the second stage, we test each
trained detector on three test sets, generated in three reverber-
ant environments of a classroom, a large concert hall and an
octagon shaped library, as detailed in Section 2. An experi-
ment conducted by the authors of this study showed that these
three acoustic spaces are characterized by long (1 s), medium
(0.8 s) and short (0.6 s) reverberation time, in correspondence.

By observing Fig. 1, several conclusions can be derived.
First and foremost, if the training set contains merely ane-
choic data, then the performance of all VADs is significantly
degraded when tested in real reverberant conditions. Respec-
tively, employing the suggested augmented training set that
comprises of reverberant utterances consistently enhances
VAD performance in practical scenarios. The reason is that
acoustic patterns and features highly differ between reverber-
ant and anechoic environments, and this mismatch between
the training data and real data is mitigated by the reverberant
augmented training set. Another interesting derivation is that
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the RIR model introduced by Valeau [18] consistently leads
to the highest performance, relative to competing RIR mod-
els, for all VADs and in all tested acoustics. One explanation
is that the model proposed in [18] predicts room acoustics
better than the remaining models. It should be noticed that
training with Valeau RIR model leads to rapid convergence
of the ROC curves and leading AUC values. These results
indicate that detectors trained with Valeau impulse response
achieve wide margins of separation between speech and si-
lence. Therefore, these detectors experience high robustness
from noises and interferences that might shift the classifier.

Further derivations can be made based on Fig 2. The
reported results reaffirm that augmentation of the training set
with respect to Valeau RIR model leads to enhanced VAD
performance in reverberant conditions, compared to training
that merely considers anechoic data. This enhancement can
be quantified by approximately 20% gap across all perfor-
mance measures of accuracy, precision, recall and F1-score.
This conclusion also implies high generalization ability of
all VADs that are trained with [18], since they consistently
achieve enhanced performance for all measures and in all
three acoustic environments. Next, let us focus on the in-
terpretation of the accuracy, precision and recall measures.
Since the training and test sets are balanced, these values
strongly characterize the capabilities of the detector. The
accuracy measure confirms that the Valeau model leads to
accurate detection in frames of both speech and silence.
Also, the enhanced precision measure correspondingly low-
ers the false-positive value, i.e., non-speech frames have
lower probability of being classified as speech. This result
highly benefits applications such as speech enhancement, in
which interferences may lead to severe degradation in prac-
tical performance. In a similar manner, the increase in recall
decreases the false-negative measure. Thus, loss of infor-
mation that typically lies in speech frames is obviated with
higher probability.

Next, we focus on Ivry VAD [12] that achieved leading
performance in all previous experiments, as can be viewed in
Figs. 1 and 2. A further analysis and evaluation of Ivry detec-
tor was conducted, and the results are depicted in Fig. 3. This
detector obtains a state-of-the-art performance of 95% on av-
erage in all reported evaluation measures when trained with
Valeau RIR model, which prevails competing VAD methods.
Also, this detection system obtains leading accuracy, preci-
sion and recall measures across all tested reverberant setups.
This outcome points on high generalization ability, robustness
for noises and interferences, and prime accuracy in correctly
distinguishing speech from silence.

4. CONCLUSIONS

In this study, we have considered five different state-of-the-
art deep-learning-based VADs. We have shown that these de-
tectors, when trained with merely anechoic data, experience
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Fig. 1. Detection rate versus false alarm rate in a reverberant
setup of a classroom. Comparison is made between the five
different training RIR models. VADs (top to bottom): Ivry,
Ariav-W, Kim, Wagner and Ariav-R.
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Fig. 2. Performance of the five VADs in real reverberant con-
ditions of (top to bottom): classroom, large concert hall, oc-
tagon library. Comparison is made between employing ane-
choic training (dark) and augmented training with Valeau RIR
model (light).

substantial degradation in performance when tested in rever-
berant conditions. To mitigate the mismatch between train-
ing data and real data, we simulated an augmented training
set that contains both an anechoic corpus and its reverber-
ant transformation, where the latter was generated using a
fixed room impulse response model. This extension permit-
ted detectors to learn unique patterns and audio-based fea-
tures that represent reverberant settings. The experiment was
performed independently with five different room impulse re-
sponse models. The training augmentation led to enhanced
performance of all VAD systems when tested in three differ-
ent real-life reverberant spaces of a classroom, a large con-
cert hall and an octagon shaped library. Improvement was

100

Value [%]
E 2 8

(%]
<

=

Borish Vorlander Randel Lam

100 [

Value [%]
£ 2 &

[\*]
=}
T

* Fl-score

<

Borish Vorlander Randel Lam  Valeau

100

Value [%]
2 2 8

(]
=}

Lam Valeau

Borish Vorlander Randel

Fig. 3. Performance of Ivry VAD [12] in real reverberant
conditions of (top to bottom): classroom, large concert hall,
octagon library. Comparison is made between the five RIR
training models.

obtained in terms of both accuracy, generalization and ro-
bustness abilities. Also, evaluation of performance measures
yielded an average increase of 20% in accuracy, precision and
recall with respect to non-reverberant training corpus. This
study has also shown that the response model introduced by
Valeau [18] consistently leads to the best performance, re-
gardless of the detector and the tested acoustic environment.
That and more, the VAD introduced by Ivry [12] has achieved
leading performance across all experiments. In future work,
additional aspects such as feature engineering and dedicated
architecture will be addressed in order to further enhance Ivry
detector and adjust it for practical and reverberant acoustic
scenarios.
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