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Abstract—We recently introduced the Efficient User-centric
Residual-Echo Suppression (E-URES) framework, which signifi-
cantly reduces the floating-point operations per second (FLOPS)
required during inference by 90% compared to the URES
framework. The E-URES operates based on a user-operating
point (UOP) defined by two key metrics: the residual echo
suppression level (RESL) and the desired-speech maintained level
(DSML) that the user anticipates from the output signal of a
residual echo suppression (RES) system. In the first stage, an
ensemble of 101 branches is employed, where each branch has
two cascaded neural networks: a preliminary RES system with a
design parameter, which varies between branches and balances
the RESL and DSML of its RES systems’ prediction, and a
subsequent UOP estimator. In the second stage, a neural network
uses available acoustic signals and the UOP to predict which three
branches achieve the highest acoustic echo cancellation mean
opinion score (AECMOS) within a specified UOP-error tolerance.
Then, costly AECMOS calculations are performed only for these
selected branches. Despite this efficiency mechanism, the E-URES
can apply real-time inference only with dedicated and expensive
hardware, limiting its wide adoption. Here, we present E-URES
2.0, which focuses on reducing the computational costs of E-
URES in its first stage. A lightweight neural network preprocesses
available acoustic signals and the UOP to track a subset of the
101 design parameters that their branches produce the most
accurate UOP estimations in their outcomes. Only these branches
are calculated during inference and continue to the AECMOS
estimation stage. With 60 hours of data, we show that with a
negligible performance drop on average, the E-URES 2.0 can
reduce 87% of the branches and 61% of the FLOPS of the
E-URES and can achieve real-time inference with standard,
affordable hardware.

Index Terms—Residual-echo suppression, user-centric, AEC-
MOS, computational efficiency, deep learning.

I. INTRODUCTION

The rise in virtual conferencing has greatly increased the
utilization of hands-free voice communication [1]-[5]. In this
scenario, there are typically two main points of communi-
cation: the far-end and the near-end. Generally, the distant
speakers, often in a close-talk setting, have their information
transmitted to the near-end speakers, who are typically in
a conference room. At the near-end, the distant signal is
often played through a loudspeaker placed near the local
microphone [6]. During periods of simultaneous talking, the
local microphone picks up the intended speech from the
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local participants, along with an amplified, nonlinear, echoing
modification of the distant signal and background noise, which
reduces the intelligibility of the conversation perceived in the
far-end [7]-[9].

Most studies on RES prioritize benchmarking of different
models over user preferences, as reinforced in recent research
[10]-[14]. These studies often do not support a framework that
balances residual echo and speech distortion, accommodates
user inputs, and optimizes the AECMOS [15], which correlates
strongly with subjective human ratings of speech quality in
RES systems [16]. To address these gaps, we introduced the
URES framework [17] and its more computationally efficient
version, the E-URES [18]. Given a UOP as an input that
includes the desired RESL and DSML values [16], [19] at
the E-URES outcome, the E-URES starts with an ensemble of
101 branches, each containing two cascaded neural networks:
an RES system with a design parameter, which varies between
branches to balance the RESL and DSML of its RES systems’
prediction, followed by a UOP estimator. In the second stage,
a neural network uses available acoustic signals and the UOP
to predict which three branches achieve the highest AECMOS
and also comply with a specified UOP-error tolerance. The
costly AECMOS calculations are performed only for these
selected branches, and the RES system prediction with the
highest AECMOS is chosen to be communicated to the far-
end. The E-URES framework delivers three primary benefits:
it ensures the predicted RESL and DSML are closely matched
to the UOP, adjusts to any modifications in the UOP on the
fly, and optimizes the AECMOS value of its output.

Although the E-URES reduces the URES’ FLOPS by
90% during inference, it still requires expensive, dedicated
hardware for real-time performance. It cannot achieve this on
standard hardware, limiting its wider adoption. To overcome
this, we introduce E-URES 2.0, which aims to reduce the
number of branches calculated during inference. It utilizes a
lightweight neural network that preprocesses available acoustic
signals and the UOP to track a small subset of the 101 pos-
sible design parameters that their branches produce the most
accurate UOP estimations at their end. Only these branches
are calculated and proceed to have AECMOS estimations as
in the E-URES. With the AEC-challenge database [20] and
independent recordings [21], we use 60 hours to demonstrate
that the E-URES 2.0 can achieve real-time inference on
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Fig. 1. The E-URES 2.0 framework. Top: a typical RES acoustic config-
uration. Bottom: The E-URES 2.0 framework, featuring the neural network
indicated by a dashed line. An RES and RDE pair is enabled (as indicated
by the ‘EN’ mark) if its index is included in A. This neural network is what
sets E-URES 2.0 apart from its previous version.

standard hardware by using 87% fewer branches and 61%
less FLOPS, with a slight performance drop compared to the
E-URES, on average. These findings encompass double-talk
scenarios and hold regardless of echo-path variations, while
including conditions with low signal-to-noise ratios (SNRs)
and signal-to-echo ratios (SERs) that reveal our proposed
framework maintains its negligible performance gap from the
E-URES in challenging acoustic conditions.

II. PROBLEM FORMULATION

The E-URES 2.0 is viewed in Fig. 1. Scalars are indicated
in italics, while column vectors are shown in bold. For time
instance n € Z, the local microphone signal is:

=s(n)+w(n)+y(n). (1)

Here, s(n) represents the desired speech signal, w (n) en-
compasses environmental and system noise, and y (n) holds
the reverberant, nonlinearly-distorted echo from the far-end:

y(n) =h" (n)xx (n). )

Here, xnp (n) € R are the recent L samples of the far-
end signal after nonlinear distortions, and h(n) € RY is
the impulse response between the loudspeaker and micro-
phone, described with L coefficients. A linear AEC is fed by
m (n) and the L latest samples of the remote speech signal,
x(n) € Ri, and produces an approximation of the impulse
response, h (n) € RE.

The E-URES pipeline receives the echo estimate y(n)
and the linear adaptation error e (n), along with x (n) and
m (n), and estimates the desired speech signal, s (n), that is

m(n)

transmitted to the far-end. The goals of the U-RES 2.0 are that
$(n) meets the UOP and an optimal AECMOS value, and to
achieve real-time communication on standard hardware.

III. E-URES 2.0
A. The E-URES Framework

From this section onwards, we neglect the time index n.
Consider (R,D) as the UOP, where R € R and D € R are
the RESL the DSML, respectively [19]. This study supports
15 <R <30and 7.5 < D <15, in dB. In [21], we introduced
an RES system that operates in the STFT domain and is fed
by the linear AEC’s output signals [22]. A tuneable design
parameter o € R penalizes the loss function J(«) during
training and by that balances echo suppression and speech
distortion of the RES module outcome [21]:

~ 2 ~112
=[S =sf, o8]+ 8 teo. 0

where S and S are respectively the amplitudes of the STFT
of Sand s, | - || and o2, are the ¢, norm and variance,
and [,-¢ equals 1 if &« > 0 and O otherwise. In [19], we
demonstrated that the RESL tends to rise as « increases while
the DSML generally declines, and the other way around.
Therefore, adjusting o makes it possible to have the RESL and
DSML coinciding with a given UOP. We employ 101 branches
and pre-train them, where each branch starts with an RES
system instance with a unique « from the set {0,0.01,...,1}.
The index 7 in A = {0,1,...,100} enumerates the RES and
its prediction for every instance, denoted as RES; and §;,
correspondingly. We use «; = i/100 to pre-train RES;. Since
the RESL and DSML require the desired speech signal s that
cannot be attained during inference, each branch proceeds with
an RESL-DSML Estimator (RDE) that learns to map available
waveform signals to the RESL and DSML values of s;. For
each branch, RDE; receives the waveform signals x, y, e,
m, and ;. The RES system RDE; predicts the estimated
RESL and DSML of §; as R; € R and D; € R, respectively.

We define Ag = ‘R R‘ and Ag = ’D D‘ to capture

how R eR and D, e R respectlvely deviate from the UOP.
The non-negative parameters THr € R and THp € R, in dB,
describe the upper bound allowed for these deviations. Let
the subset A™ C A hold every i value that confines to
AA < THR and AA < THp. Next, the waveform signals x,

y, e, m and S, and (Rq,D> pairs for all ¢, are fed to a
neural network that predicts the three branches that yield the
highest AECMOS as the indices 4,73, i5 € A™. In practice,
the costly AECMOS is inferred only for s,1 572 s, We
denote s; as the one prediction out of the three that achieves
max1ma1 AECMOS and transmitted from the near-end.

B. The E-URES 2.0 Framework

We replace the brute-force approach of the E-URES of
using 101 branches with a data-driven solution using a lean
fully-connected neural network that operates in the waveform
domain and has low computational demands and latency. We
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first create a training set for this network by collecting from
the E-URES, for every time frame, the index of the branch
that produces the most accurate UOP estimate and denote it
iyop, so formally iyop = argmin;c 4 Az + Ag . Then, we
train the lightweight neural network of the E- URES 2.0 to
receive all possible « values, i.e., {0,0.01,...,1}, and the
waveforms x, y, e and m and map them to a vector in a
one-hot-encoder representation [23], with 101 elements that all
equal O except for the element in iyop that equals 1. During
training, the categorical cross-entropy loss [24] between the
ground truth and the prediction is minimized. In real-time,
the network infers a vector of probabilities, and the K-top
values have their branches calculated in practice, which yields
K RES predictions and K corresponding UOP estimates,
where K € A. Formally, let A= {ZUOP17ZUOP2, .. ZUOPK}
hold predicted indices of the K branches with the highest
probability values, where iyop, € A,V1 < k < K. Then, the
calculated RES predictions and UOP estimates undergo the
remainder of the pipeline similarly to the E-URES. Eventually,
the RES output signal with the maximal AECMOS value
within the UOP-error tolerance is delivered to the far-end.

IV. EXPERIMENTAL SETTINGS
A. Data Acquisition

We utilized 50 hours of double-talk periods as both synthetic
and real data from the AEC-challenge corpus [20], which
features realistic clips of segments with and without changes
in the echo path. No echo-path changes mean the acoustic
scenario remains stationary on the local end. In contrast,
periods with echo-path changes mean that the near-end setup
regularly moves, whether due to devices or speakers move-
ment, leading to concurrent filter re-convergence behavior
in the linear AEC stage [8], [20], [25]. We also employed
10 hours of independent real recordings as detailed in [21],
focusing on double-talk periods. This data features clips with
no echo-path changes from the TIMIT [26] and Librispeech
[27] databases. A mouth simulator and a loudspeaker were
utilized to produce the local speech and echo, respectively,
each placed at different positions in the near-end. This cor-
pus focuses on extremely low values of SERs, extending
the weakest SERs in the AEC challenge to test the oper-
ational envelope of the E-URES 2.0 performance. Overall,
the SER levels, defined SER=101og, [[|s (n)[13/]y (n)[3]
ranged from —20 to 10 dB, while the SNR levels, defined
SNR=101log, [||s (n) [|3/][w (n) |3] ranged from 0 to 40 dB.
The sample frequency for the entire database is 16 KHz.

B. Preprocessing, training, and inference

We use 45 hours from the AEC challenge for training,
divided between 35 hours of real and 10 hours of synthetic
recordings. From the independent recordings, we consider 5
hours for training. For testing, we take 5 hours from each cor-
pus. We ensure that these datasets are balanced by following
the practices presented in [21], e.g., for equal representation of
male and female speakers, avoidance of placement of identical
speakers at both ends of the conversation, and more. We

partition the data into segments of 10 seconds each, which
causes frequent changes in the echo path to resemble realistic
cases. This leads to frequent re-convergence of the adaptive
filter used to reduce linear echo, which tracks the echo-
path continuously [20]. Specifically, we employ the sign-error
normalized least mean square (SNLMS) adaptive filter [28]-
[30] that is 150 ms in duration, i.e., L = 2400. Echo-paths
experience abrupt changes every ¢ seconds, with ¢ uniformly
distributed between 4 and 10 seconds, a common trait in
practice. Analysis in the waveform domain is done with a 20
ms window with a 50% step size. We train the network using
standard back-propagation through time and hyper-parameters
that include a learning rate of 10~%, which decreases by 10~6
every 5 epochs, 20 epochs, and a mini-batch size of 100 ms,
utilizing the Adam optimizer [31]. We normalize the inputs
and outputs to the network during the training phase, and
apply those statistics to test data in the inference stage [32].
The neural network architecture includes an input layer, two
hidden layers with 1024 neurons each, and an output layer.
Each layer is followed by a dropout layer [33] with a ratio of
0.5 and a ReLU [34] activation function, except for the output
layer, which uses a softmax activation [35]. The network’s
input layer integrates 40 ms of past context into each acoustic
signal and consists of 1610 neurons. The output layer, with
101 neurons, is designed to capture the probability distribution
for each of the 101 design parameters. With a 16-bit floating-
point precision, the network comprises 7.8 x 10 parameters,
performs 1 x 10° FLOPS, and requires for allocation and
instructions an amount of 15.6 megabytes memory. Training
took 18 hours on an Intel Core i17-8700K CPU @ 3.7 GHz
with two Nvidia GeForce RTX 2080 Ti GPUs.

C. Performance Measures

We employ version 4 of AECMOS from Microsoft’s API
[15]. We report on the first category of AECMOS, which
predicts how the subjective human rater would reply to, “How
would you rate the echo degradation?”. The AECMOS does
not support shorter inputs than 15 seconds and we follow
that requirement in consistency with the approach used in the
URES case [17]. This metric ranges from 1 to 5 and is unitless,
with 5 being the highest score. To evaluate the performance
of the E-URES 2.0, we define A = Az + Ag, where a
smaller A value indicates a more accurate UOP prediction
of the output of the E-URES 2.0. To report the compute and
timing requirements of the proposed framework, we consider
the measures of FLOPS, memory required for allocations and
instructions, number of parameters, system latency, and the
real-time factor (RTF) [36].

V. RESULTS

We report the E-URES 2.0 inference results on the entire
test set using mean and standard deviation. Each waveform
signal set is inferred with a random UOP from the supported
values 15 < R < 30 and 7.5 < D < 15, in dB, to account for
varied user preferences.
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Fig. 2. The AECMOS values and the A of the E-URES 2.0 output prediction
vs. number of branches used for inference, i.e., K, considering segments with
no echo-path changes.

TABLE I
COMPUTATIONAL LOAD AND TIMING REQUIREMENTS OF THE E-URES
2.0 wiTH K = 13 BRANCHES VS. THE E-URES.

[ Measure | Parameters [  FLOPS [ Latency | RTF ]
E-URES 2.0 | 18.1 x 10% | 0.56 x 102 | 15.1 ms | 0.75
E-URES 26.3 x 10% | 1.43 x 102 | 38.6 ms | 1.93
TABLE 1II

AECMOS RESULTS OF THE E-URES 2.0 WITH K = 13 BRANCHES VS.
THE E-URES IN SCENARIOS WITH AND WITHOUT ECHO-PATH CHANGE.

[ Scenario | Echo-path change | No echo-path change ]
E-URES 2.0 3.02£0.5 3.44+0.4
E-URES 3.15+£0.45 3.54+0.4
TABLE IIT

AECMOS RESULTS OF THE E-URES 2.0 wiTH K = 13 BRANCHES VS.
THE E-URES IN VARIOUS SER LEVELS WITH NO ECHO-PATH CHANGE.

[ SER [ -20 [dB] [ -10 [dB] | O [dB] | 10 [dB] |
E-URES 2.0 2.85 3.31 3.70 3.91
E-URES 3.0 3.4 3.75 3.95
TABLE IV

AECMOS RESULTS OF THE E-URES 2.0 WITH K = 13 BRANCHES VS.
THE E-URES IN VARIOUS SNR LEVELS WITH NO ECHO-PATH CHANGE.

[ _SNR [ 0[dB] | 10 [dB] | 25 [dB] | 40 [dB] |
E-URES 20 | 2.68 | 3.16 3.55 3.82
E-URES 2.85 33 3.65 39

In Fig 2, we examine how the AECMOS and A of the URES
2.0 output vary with the number of inference branches used,
i.e., K. Based on these results, we chose to fix the number
of inference branches to K = 13. Fewer branches than 13
degrade both the AECMOS and A to where its performance
degradation does not justify its resources efficiency, while
more branches are ineffective in performance but demand
more redundant resources. The negligible average performance
improvement of both the AECMOS and A from K = 13 to
K = 101 demonstrates the efficiency gap the E-URES 2.0
enables compared to its previous version.

In Table I, we examine the resource demand of the E-URES
2.0 with K = 13 branches, and compare it with the ones of
the E-URES framework. Throughout all compute and timing
metrics, the E-URES 2.0 framework outperforms the E-URES
in terms of efficiency, with 31% less parameters, 61% less
FLOPS, and memory for allocation and instructions reduced

from over 50 megabytes to roughly 36 megabytes. When
calculated using the specifications of standard and affordable
hardware, i.e., the 11th Gen Intel CoreTM i17-11850H @
2.50 GHz processor that has 0.74 x 102 FLOPS at maximal
efficiency, then accumulated buffering and inference times,
i.e., latency, are cut down by 23.5 ms per input frame of 20 ms.
Thus, the E-URES 2.0 achieves an RTF smaller than 1, while
the E-URES has an RTF bigger than 1 and cannot operate
in real-time [36]. The E-URES would require hardware with
twice the amount of FLOPS than this processor to run real-
time inference, while the E-URES 2.0 enables accessible and
affordable adoption by personal end-users.

In Table II, we quantify how much the AECMOS and
A values of the E-URES 2.0 were compromised on the ac-
count of its enhanced efficiency over the E-URES. Separately
evaluating the AECMOS in cases with and without echo-
path changes, we observe that, on average, the AECMOS
decreases by 0.13 points in scenarios with echo-path changes
and by 0.1 points in scenarios without echo-path changes. The
standard deviation values remain nearly unchanged. Tables
IIT and IV examine the effect of the SER and SNR levels
on the E-URES 2.0 performance, only in periods without
echo-path changes. Across the entire range of noise and
echo levels, a negligible drop in performance is shown with
SNR = 0 dB causing the maximal reduction in the AECMOS
of 0.17 points, and 0.15 points when SER = —20 dB. It
should be emphasized that these average gaps are mostly
unperceivable to the human ear [17], and do not indicate a
performance downgrade for the user at the receiving end of
the conversation, i.e., the far-end. It is evident that the neural
network and mechanism we introduced in E-URES 2.0 have
demonstrated efficiency while maintaining nearly the same
average performance as the original E-URES framework. This
consistently applies to different acoustic cases, e.g., with and
without echo-path changes, showcasing the neural network’s
generalization ability in echo-path re-convergence scenarios.
Similarly, the network’s robustness is indicated for varying
noise and echo levels.

VI. CONCLUSIONS

The E-URES 2.0 framework has been developed as a more
efficient alternative to the E-URES framework, addressing its
high computational demands. A lightweight neural network
associates between waveform signals and the probability of an
RES system fed by those signals to minimize UOP deviations.
The efficiency mechanism in this new version allows the E-
URES 2.0 to reduce computational load during inference and
operate in real-time on standard, readily available hardware.
Our experiments indicate that E-URES 2.0 reduces computa-
tional costs by 61% with only a minor performance decrease.
The E-URES 2.0 framework significantly enhances residual
echo suppression, making it more practical and efficient for
real-world use. This improvement boosts user experience in
various acoustic environments. Moving forward, we will refine
other aspects of the E-URES framework to ensure seamless
integration into offices, homes, and mobile devices.
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