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Abstract—We recently introduced the Efficient User-centric
Residual-Echo Suppression (E-URES) framework, which signifi-
cantly reduces the floating-point operations per second (FLOPS)
required during inference by 90% compared to the URES
framework. The E-URES operates based on a user-operating
point (UOP) defined by two key metrics: the residual echo
suppression level (RESL) and the desired-speech maintained level
(DSML) that the user anticipates from the output signal of a
residual echo suppression (RES) system. In the first stage, an
ensemble of 101 branches is employed, where each branch has
two cascaded neural networks: a preliminary RES system with a
design parameter, which varies between branches and balances
the RESL and DSML of its RES systems’ prediction, and a
subsequent UOP estimator. In the second stage, a neural network
uses available acoustic signals and the UOP to predict which three
branches achieve the highest acoustic echo cancellation mean
opinion score (AECMOS) within a specified UOP-error tolerance.
Then, costly AECMOS calculations are performed only for these
selected branches. Despite this efficiency mechanism, the E-URES
can apply real-time inference only with dedicated and expensive
hardware, limiting its wide adoption. Here, we present E-URES
2.0, which focuses on reducing the computational costs of E-
URES in its first stage. A lightweight neural network preprocesses
available acoustic signals and the UOP to track a subset of the
101 design parameters that their branches produce the most
accurate UOP estimations in their outcomes. Only these branches
are calculated during inference and continue to the AECMOS
estimation stage. With 60 hours of data, we show that with a
negligible performance drop on average, the E-URES 2.0 can
reduce 87% of the branches and 61% of the FLOPS of the
E-URES and can achieve real-time inference with standard,
affordable hardware.

Index Terms—Residual-echo suppression, user-centric, AEC-
MOS, computational efficiency, deep learning.

I. INTRODUCTION

The rise in virtual conferencing has greatly increased the

utilization of hands-free voice communication [1]–[5]. In this

scenario, there are typically two main points of communi-

cation: the far-end and the near-end. Generally, the distant

speakers, often in a close-talk setting, have their information

transmitted to the near-end speakers, who are typically in

a conference room. At the near-end, the distant signal is

often played through a loudspeaker placed near the local

microphone [6]. During periods of simultaneous talking, the

local microphone picks up the intended speech from the

This research was supported by the Israel Science Foundation (grant no.
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local participants, along with an amplified, nonlinear, echoing

modification of the distant signal and background noise, which

reduces the intelligibility of the conversation perceived in the

far-end [7]–[9].

Most studies on RES prioritize benchmarking of different

models over user preferences, as reinforced in recent research

[10]–[14]. These studies often do not support a framework that

balances residual echo and speech distortion, accommodates

user inputs, and optimizes the AECMOS [15], which correlates

strongly with subjective human ratings of speech quality in

RES systems [16]. To address these gaps, we introduced the

URES framework [17] and its more computationally efficient

version, the E-URES [18]. Given a UOP as an input that

includes the desired RESL and DSML values [16], [19] at

the E-URES outcome, the E-URES starts with an ensemble of

101 branches, each containing two cascaded neural networks:

an RES system with a design parameter, which varies between

branches to balance the RESL and DSML of its RES systems’

prediction, followed by a UOP estimator. In the second stage,

a neural network uses available acoustic signals and the UOP

to predict which three branches achieve the highest AECMOS

and also comply with a specified UOP-error tolerance. The

costly AECMOS calculations are performed only for these

selected branches, and the RES system prediction with the

highest AECMOS is chosen to be communicated to the far-

end. The E-URES framework delivers three primary benefits:

it ensures the predicted RESL and DSML are closely matched

to the UOP, adjusts to any modifications in the UOP on the

fly, and optimizes the AECMOS value of its output.

Although the E-URES reduces the URES’ FLOPS by

90% during inference, it still requires expensive, dedicated

hardware for real-time performance. It cannot achieve this on

standard hardware, limiting its wider adoption. To overcome

this, we introduce E-URES 2.0, which aims to reduce the

number of branches calculated during inference. It utilizes a

lightweight neural network that preprocesses available acoustic

signals and the UOP to track a small subset of the 101 pos-

sible design parameters that their branches produce the most

accurate UOP estimations at their end. Only these branches

are calculated and proceed to have AECMOS estimations as

in the E-URES. With the AEC-challenge database [20] and

independent recordings [21], we use 60 hours to demonstrate

that the E-URES 2.0 can achieve real-time inference onIC
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Fig. 1. The E-URES 2.0 framework. Top: a typical RES acoustic config-
uration. Bottom: The E-URES 2.0 framework, featuring the neural network
indicated by a dashed line. An RES and RDE pair is enabled (as indicated

by the ‘EN’ mark) if its index is included in ̂A. This neural network is what
sets E-URES 2.0 apart from its previous version.

standard hardware by using 87% fewer branches and 61%

less FLOPS, with a slight performance drop compared to the

E-URES, on average. These findings encompass double-talk

scenarios and hold regardless of echo-path variations, while

including conditions with low signal-to-noise ratios (SNRs)

and signal-to-echo ratios (SERs) that reveal our proposed

framework maintains its negligible performance gap from the

E-URES in challenging acoustic conditions.

II. PROBLEM FORMULATION

The E-URES 2.0 is viewed in Fig. 1. Scalars are indicated

in italics, while column vectors are shown in bold. For time

instance n ∈ Z, the local microphone signal is:

m (n) = s (n) + w (n) + y (n) . (1)

Here, s (n) represents the desired speech signal, w (n) en-

compasses environmental and system noise, and y (n) holds

the reverberant, nonlinearly-distorted echo from the far-end:

y (n) = hT (n)xNL (n) . (2)

Here, xNL (n) ∈ R
L are the recent L samples of the far-

end signal after nonlinear distortions, and h (n) ∈ R
L is

the impulse response between the loudspeaker and micro-

phone, described with L coefficients. A linear AEC is fed by

m (n) and the L latest samples of the remote speech signal,

x (n) ∈ R
L, and produces an approximation of the impulse

response, ĥ (n) ∈ R
L.

The E-URES pipeline receives the echo estimate ŷ (n)
and the linear adaptation error e (n), along with x (n) and

m (n), and estimates the desired speech signal, ŝ (n), that is

transmitted to the far-end. The goals of the U-RES 2.0 are that

ŝ (n) meets the UOP and an optimal AECMOS value, and to

achieve real-time communication on standard hardware.

III. E-URES 2.0

A. The E-URES Framework

From this section onwards, we neglect the time index n.

Consider (R,D) as the UOP, where R ∈ R and D ∈ R are

the RESL the DSML, respectively [19]. This study supports

15 ≤ R ≤ 30 and 7.5 ≤ D ≤ 15, in dB. In [21], we introduced

an RES system that operates in the STFT domain and is fed

by the linear AEC’s output signals [22]. A tuneable design

parameter α ∈ R penalizes the loss function J(α) during

training and by that balances echo suppression and speech

distortion of the RES module outcome [21]:

J(α) =
∥∥∥Ŝ− S

∥∥∥2
2
+ α ·

∥∥∥Ŝ∥∥∥2
2
+ σ2

̂S
· Iα>0 , (3)

where Ŝ and S are respectively the amplitudes of the STFT

of ŝ and s, ‖ · ‖2 and σ2
(·) are the �2 norm and variance,

and Iα>0 equals 1 if α > 0 and 0 otherwise. In [19], we

demonstrated that the RESL tends to rise as α increases while

the DSML generally declines, and the other way around.

Therefore, adjusting α makes it possible to have the RESL and

DSML coinciding with a given UOP. We employ 101 branches

and pre-train them, where each branch starts with an RES

system instance with a unique α from the set {0, 0.01, . . . , 1}.

The index i in A = {0, 1, . . . , 100} enumerates the RES and

its prediction for every instance, denoted as RESi and ŝi,
correspondingly. We use αi = i/100 to pre-train RESi. Since

the RESL and DSML require the desired speech signal s that

cannot be attained during inference, each branch proceeds with

an RESL-DSML Estimator (RDE) that learns to map available

waveform signals to the RESL and DSML values of ŝi. For

each branch, RDEi receives the waveform signals x, ŷ, e,

m, and ŝi. The RES system RDEi predicts the estimated

RESL and DSML of ŝi as R̂i ∈ R and D̂i ∈ R, respectively.

We define Δ
̂Ri

=
∣∣∣R̂i − R

∣∣∣ and Δ
̂Di

=
∣∣∣D̂i − D

∣∣∣ to capture

how R̂i ∈ R and D̂i ∈ R respectively deviate from the UOP.

The non-negative parameters THR ∈ R and THD ∈ R, in dB,

describe the upper bound allowed for these deviations. Let

the subset ATH ⊆ A hold every i value that confines to

Δ
̂Ri

≤ THR and Δ
̂Di

≤ THD. Next, the waveform signals x,

ŷ, e, m and ŝi, and
(

R̂i, D̂i

)
pairs for all i, are fed to a

neural network that predicts the three branches that yield the

highest AECMOS as the indices i1p, i
2
p, i

3
p ∈ ATH. In practice,

the costly AECMOS is inferred only for ŝi1p , ŝi2p , ŝi3p . We

denote ŝ̂i as the one prediction out of the three that achieves

maximal AECMOS and transmitted from the near-end.

B. The E-URES 2.0 Framework

We replace the brute-force approach of the E-URES of

using 101 branches with a data-driven solution using a lean

fully-connected neural network that operates in the waveform

domain and has low computational demands and latency. We
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first create a training set for this network by collecting from

the E-URES, for every time frame, the index of the branch

that produces the most accurate UOP estimate and denote it

iUOP, so formally iUOP = argmini∈A Δ
̂Ri

+Δ
̂Di

. Then, we

train the lightweight neural network of the E-URES 2.0 to

receive all possible α values, i.e., {0, 0.01, . . . , 1}, and the

waveforms x, ŷ, e and m and map them to a vector in a

one-hot-encoder representation [23], with 101 elements that all

equal 0 except for the element in iUOP that equals 1. During

training, the categorical cross-entropy loss [24] between the

ground truth and the prediction is minimized. In real-time,

the network infers a vector of probabilities, and the K-top

values have their branches calculated in practice, which yields

K RES predictions and K corresponding UOP estimates,

where K ∈ A. Formally, let Â = {̂iUOP1 , îUOP2 , . . . , îUOPK
}

hold predicted indices of the K branches with the highest

probability values, where îUOPk
∈ A, ∀1 ≤ k ≤ K. Then, the

calculated RES predictions and UOP estimates undergo the

remainder of the pipeline similarly to the E-URES. Eventually,

the RES output signal with the maximal AECMOS value

within the UOP-error tolerance is delivered to the far-end.

IV. EXPERIMENTAL SETTINGS

A. Data Acquisition

We utilized 50 hours of double-talk periods as both synthetic

and real data from the AEC-challenge corpus [20], which

features realistic clips of segments with and without changes

in the echo path. No echo-path changes mean the acoustic

scenario remains stationary on the local end. In contrast,

periods with echo-path changes mean that the near-end setup

regularly moves, whether due to devices or speakers move-

ment, leading to concurrent filter re-convergence behavior

in the linear AEC stage [8], [20], [25]. We also employed

10 hours of independent real recordings as detailed in [21],

focusing on double-talk periods. This data features clips with

no echo-path changes from the TIMIT [26] and Librispeech

[27] databases. A mouth simulator and a loudspeaker were

utilized to produce the local speech and echo, respectively,

each placed at different positions in the near-end. This cor-

pus focuses on extremely low values of SERs, extending

the weakest SERs in the AEC challenge to test the oper-

ational envelope of the E-URES 2.0 performance. Overall,

the SER levels, defined SER=10 log10
[‖s (n) ‖22/‖y (n) ‖22]

ranged from −20 to 10 dB, while the SNR levels, defined

SNR=10 log10
[‖s (n) ‖22/‖w (n) ‖22

]
ranged from 0 to 40 dB.

The sample frequency for the entire database is 16 KHz.

B. Preprocessing, training, and inference

We use 45 hours from the AEC challenge for training,

divided between 35 hours of real and 10 hours of synthetic

recordings. From the independent recordings, we consider 5

hours for training. For testing, we take 5 hours from each cor-

pus. We ensure that these datasets are balanced by following

the practices presented in [21], e.g., for equal representation of

male and female speakers, avoidance of placement of identical

speakers at both ends of the conversation, and more. We

partition the data into segments of 10 seconds each, which

causes frequent changes in the echo path to resemble realistic

cases. This leads to frequent re-convergence of the adaptive

filter used to reduce linear echo, which tracks the echo-

path continuously [20]. Specifically, we employ the sign-error

normalized least mean square (SNLMS) adaptive filter [28]–

[30] that is 150 ms in duration, i.e., L = 2400. Echo-paths

experience abrupt changes every t seconds, with t uniformly

distributed between 4 and 10 seconds, a common trait in

practice. Analysis in the waveform domain is done with a 20

ms window with a 50% step size. We train the network using

standard back-propagation through time and hyper-parameters

that include a learning rate of 10−4, which decreases by 10−6

every 5 epochs, 20 epochs, and a mini-batch size of 100 ms,

utilizing the Adam optimizer [31]. We normalize the inputs

and outputs to the network during the training phase, and

apply those statistics to test data in the inference stage [32].

The neural network architecture includes an input layer, two

hidden layers with 1024 neurons each, and an output layer.

Each layer is followed by a dropout layer [33] with a ratio of

0.5 and a ReLU [34] activation function, except for the output

layer, which uses a softmax activation [35]. The network’s

input layer integrates 40 ms of past context into each acoustic

signal and consists of 1610 neurons. The output layer, with

101 neurons, is designed to capture the probability distribution

for each of the 101 design parameters. With a 16-bit floating-

point precision, the network comprises 7.8× 106 parameters,

performs 1 × 109 FLOPS, and requires for allocation and

instructions an amount of 15.6 megabytes memory. Training

took 18 hours on an Intel Core i7-8700K CPU @ 3.7 GHz

with two Nvidia GeForce RTX 2080 Ti GPUs.

C. Performance Measures

We employ version 4 of AECMOS from Microsoft’s API

[15]. We report on the first category of AECMOS, which

predicts how the subjective human rater would reply to, “How

would you rate the echo degradation?”. The AECMOS does

not support shorter inputs than 15 seconds and we follow

that requirement in consistency with the approach used in the

URES case [17]. This metric ranges from 1 to 5 and is unitless,

with 5 being the highest score. To evaluate the performance

of the E-URES 2.0, we define Δ = Δ
̂R
̂i
+ Δ

̂D
̂i
, where a

smaller Δ value indicates a more accurate UOP prediction

of the output of the E-URES 2.0. To report the compute and

timing requirements of the proposed framework, we consider

the measures of FLOPS, memory required for allocations and

instructions, number of parameters, system latency, and the

real-time factor (RTF) [36].

V. RESULTS

We report the E-URES 2.0 inference results on the entire

test set using mean and standard deviation. Each waveform

signal set is inferred with a random UOP from the supported

values 15 ≤ R ≤ 30 and 7.5 ≤ D ≤ 15, in dB, to account for

varied user preferences.
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Fig. 2. The AECMOS values and the Δ of the E-URES 2.0 output prediction
vs. number of branches used for inference, i.e., K, considering segments with
no echo-path changes.

TABLE I
COMPUTATIONAL LOAD AND TIMING REQUIREMENTS OF THE E-URES

2.0 WITH K = 13 BRANCHES VS. THE E-URES.

Measure Parameters FLOPS Latency RTF

E-URES 2.0 18.1× 106 0.56× 1012 15.1 ms 0.75
E-URES 26.3× 106 1.43× 1012 38.6 ms 1.93

TABLE II
AECMOS RESULTS OF THE E-URES 2.0 WITH K = 13 BRANCHES VS.

THE E-URES IN SCENARIOS WITH AND WITHOUT ECHO-PATH CHANGE.

Scenario Echo-path change No echo-path change

E-URES 2.0 3.02± 0.5 3.4± 0.4
E-URES 3.15± 0.45 3.5± 0.4

TABLE III
AECMOS RESULTS OF THE E-URES 2.0 WITH K = 13 BRANCHES VS.
THE E-URES IN VARIOUS SER LEVELS WITH NO ECHO-PATH CHANGE.

SER -20 [dB] -10 [dB] 0 [dB] 10 [dB]

E-URES 2.0 2.85 3.31 3.70 3.91
E-URES 3.0 3.4 3.75 3.95

TABLE IV
AECMOS RESULTS OF THE E-URES 2.0 WITH K = 13 BRANCHES VS.
THE E-URES IN VARIOUS SNR LEVELS WITH NO ECHO-PATH CHANGE.

SNR 0 [dB] 10 [dB] 25 [dB] 40 [dB]

E-URES 2.0 2.68 3.16 3.55 3.82
E-URES 2.85 3.3 3.65 3.9

In Fig 2, we examine how the AECMOS and Δ of the URES

2.0 output vary with the number of inference branches used,

i.e., K. Based on these results, we chose to fix the number

of inference branches to K = 13. Fewer branches than 13

degrade both the AECMOS and Δ to where its performance

degradation does not justify its resources efficiency, while

more branches are ineffective in performance but demand

more redundant resources. The negligible average performance

improvement of both the AECMOS and Δ from K = 13 to

K = 101 demonstrates the efficiency gap the E-URES 2.0

enables compared to its previous version.

In Table I, we examine the resource demand of the E-URES

2.0 with K = 13 branches, and compare it with the ones of

the E-URES framework. Throughout all compute and timing

metrics, the E-URES 2.0 framework outperforms the E-URES

in terms of efficiency, with 31% less parameters, 61% less

FLOPS, and memory for allocation and instructions reduced

from over 50 megabytes to roughly 36 megabytes. When

calculated using the specifications of standard and affordable

hardware, i.e., the 11th Gen Intel CoreTM i7-11850H @

2.50 GHz processor that has 0.74× 1012 FLOPS at maximal

efficiency, then accumulated buffering and inference times,

i.e., latency, are cut down by 23.5 ms per input frame of 20 ms.

Thus, the E-URES 2.0 achieves an RTF smaller than 1, while

the E-URES has an RTF bigger than 1 and cannot operate

in real-time [36]. The E-URES would require hardware with

twice the amount of FLOPS than this processor to run real-

time inference, while the E-URES 2.0 enables accessible and

affordable adoption by personal end-users.

In Table II, we quantify how much the AECMOS and

Δ values of the E-URES 2.0 were compromised on the ac-

count of its enhanced efficiency over the E-URES. Separately

evaluating the AECMOS in cases with and without echo-

path changes, we observe that, on average, the AECMOS

decreases by 0.13 points in scenarios with echo-path changes

and by 0.1 points in scenarios without echo-path changes. The

standard deviation values remain nearly unchanged. Tables

III and IV examine the effect of the SER and SNR levels

on the E-URES 2.0 performance, only in periods without

echo-path changes. Across the entire range of noise and

echo levels, a negligible drop in performance is shown with

SNR = 0 dB causing the maximal reduction in the AECMOS

of 0.17 points, and 0.15 points when SER = −20 dB. It

should be emphasized that these average gaps are mostly

unperceivable to the human ear [17], and do not indicate a

performance downgrade for the user at the receiving end of

the conversation, i.e., the far-end. It is evident that the neural

network and mechanism we introduced in E-URES 2.0 have

demonstrated efficiency while maintaining nearly the same

average performance as the original E-URES framework. This

consistently applies to different acoustic cases, e.g., with and

without echo-path changes, showcasing the neural network’s

generalization ability in echo-path re-convergence scenarios.

Similarly, the network’s robustness is indicated for varying

noise and echo levels.

VI. CONCLUSIONS

The E-URES 2.0 framework has been developed as a more

efficient alternative to the E-URES framework, addressing its

high computational demands. A lightweight neural network

associates between waveform signals and the probability of an

RES system fed by those signals to minimize UOP deviations.

The efficiency mechanism in this new version allows the E-

URES 2.0 to reduce computational load during inference and

operate in real-time on standard, readily available hardware.

Our experiments indicate that E-URES 2.0 reduces computa-

tional costs by 61% with only a minor performance decrease.

The E-URES 2.0 framework significantly enhances residual

echo suppression, making it more practical and efficient for

real-world use. This improvement boosts user experience in

various acoustic environments. Moving forward, we will refine

other aspects of the E-URES framework to ensure seamless

integration into offices, homes, and mobile devices.
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