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ABSTRACT

In this paper, we propose a residual echo suppression method
using a UNet neural network that directly maps the outputs
of a linear acoustic echo canceler to the desired signal in the
spectral domain. This system embeds a design parameter that
allows a tunable tradeoff between the desired-signal distortion
and residual echo suppression in double-talk scenarios. The
system employs 136 thousand parameters, and requires 1.6
Giga floating-point operations per second and 10 Mega-bytes
of memory. The implementation satisfies both the timing re-
quirements of the AEC challenge and the computational and
memory limitations of on-device applications. Experiments
are conducted with 161 h of data from the AEC challenge
database and from real independent recordings. We demon-
strate the performance of the proposed system in real-life con-
ditions and compare it with two competing methods regarding
echo suppression and desired-signal distortion, generalization
to various environments, and robustness to high echo levels.

Index Terms— Residual echo suppression, on-device im-
plementation, acoustic echo cancellation, UNet.

1. INTRODUCTION

Real-life telecommunication scenarios involve a conversation
between two speakers that are located at near-end and far-
end points. The near-end includes a microphone that captures
the near-end signal, echo produced by a loudspeaker play-
ing the far-end signal, and background noises [1]. The pres-
ence of acoustic echo can lead to degradation in intelligibility
and quality of conversation, since the far-end speaker can hear
their own voice while speaking, and near-end speech can be
screened. Conventional acoustic echo cancelers (AECs) do
not model non-linearities in the echo path, and generally in-
troduce a mismatch between true and estimated echo paths
during convergence and re-convergence [2]. This results in
residual echo that must be suppressed by a dedicated system.

Deep learning has occupied a major role in AEC studies
and showed enhanced performance compared to traditional
methods [3], [4]. A recent study exploited long short-term
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memory (LSTM) networks to jointly obtain echo cancellation
and to suppress noises and reverberations [5]. Lee et al. [6]
cascaded a fully-connected neural network (FCNN) after a
linear acoustic echo suppressor (AES) and evaluated the ob-
jective gain between the spectra amplitudes of the near-end
and AES output signals. Lei et al. [7] exploited past and fu-
ture temporal context to map the microphone and reference
far-end signals to the desired speaker via an FCNN. Lately,
deep learning and classic methods were jointly utilized in [8]
and [9], where the latter activated convolutional recurrent net-
works to evaluate the real and imaginary parts of the near-end
signal spectrogram.

In this study, we introduce a residual echo suppression
(RES) method with a dual-channel input and single-channel
output UNet neural network that directly maps the outputs of
a linear AEC to the desired near-end signal in the short-time
Fourier transform (STFT) domain. By utilizing the depth-
wise separable convolution in every convolution layer of the
UNet [10], the system comprises 136 thousand parameters
that consume 1.6 Giga floating point operations per second
(flops) and 10 Mega-bytes (MB) of memory, which makes
it suitable for on-device integration. Also, the system meets
the timing standards of the AEC challenge [11], and more
generally the constraints of hands-free communication sys-
tems [12].

Even though competing models [3]- [9], [13], [14] have
shown promising results, the performance in real acoustic en-
vironments is still challenging. Furthermore, a tunable trade-
off between the level of RES and desired-signal distortion
may benefit applications that vary in their specific tradeoff
requirements. However, this feature is not enabled by de-
sign in existing approaches. We bridge these gaps as follows.
First, we conduct experiments with over 160 h of data that
was acquired from the AEC challenge database [11] and from
independent recordings in real conditions. Second, a design
parameter that allows dynamic balance between echo reduc-
tion and signal distortion is embedded in the UNet objective
function that is minimized during the training process.

The performance of the proposed system is compared to
two existing deep learning-based methods: Zhang and Wang
[13], where a bi-LSTM structure was utilized to model an
ideal ratio mask for AEC and then for RES, and Carbajal et

ICASSP 2021 Signal Processing Grand Challenges

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on August 25,2025 at 18:20:54 UTC from IEEE Xplore. Restrictions apply.



X r

Far-end speaker

Near-end P

42—}

Near-end

Microphone vy speaker

Fig. 1. Echo cancellation system. Time indices are neglected.

al. [14], who introduced a multiple input FCNN RES system,
fed with linear AEC outputs and a reference far-end signal to
estimate a phase-sensitive mask. Experimental results show
state-of-the-art performance of the proposed method in var-
ious real-life acoustic setups. Particularly, high generaliza-
tion is demonstrated in a variety of environments, devices,
speakers, and moving echo paths. High robustness is also
achieved in extreme conditions of very low signal-to-echo-
ratios (SERs), and the effect of the tunable design parameter
is demonstrated.

The reminder of this paper is organized as follows. Sec-
tion 2 formulates the problem. Section 3 introduces the pro-
posed system. Section 4 details the experimental setup. Sec-
tion 5 reports obtained performance. Section 6 concludes.

2. PROBLEM FORMULATION

Let r [n] denote the reference far-end signal and let d [n] de-
note the desired near-end signal in the discrete time domain
Vn € ZT. The microphone signal, m [n], is given by

m[n] = f[n]+dn] +wln], ey

where f [n] is a reverberant non-linear modification of r [n]
and w [n] denotes environmental and inherent system noises.

Before applying RES, a linear AEC is applied to reduce
the linear echo. The AEC receives m [n] as input and 7 [n]
as reference, and generates two output signals: a [n], the out-
come of an adaptive filtering process that attempts to model
/ [n], and the error signal e [n] that is given by

eln]=min] —aln]. 2)
From (1) and (2) we have
el =dfnl + (f[r] —aln) +wlnl. @)

Namely, e [n] contains an additive combination of three com-
ponents: The desired signal d [n], the noise w [n], and the
residual echo z [n], given by

z[n] = f[n] —aln]. “)

The goal is to suppress the residual echo z [n] without dis-
torting the desired signal d [n]. Fig. 1 shows a scheme of the
echo cancellation system.

3. PROPOSED SYSTEM

The proposed RES system comprises a UNet neural network
with two input channels and one output channel. The network
is fed with the STFT amplitude of the linear AEC outputs and
aims to recover the STFT amplitude of the desired near-end
signal. The contracting and expansive paths of the UNet are
each constructed of 5 convolution units. Every unit contains 2
concatenated and identical layers, where every layer consists
of 2-D convolution, 2-D batch normalization, and ReLLU acti-
vation. Here, convolution is implemented in two parts; depth-
wise convolution layer with a 3 x 3 kernel and padding of 1,
followed by a separable convolution layer, to reduce compu-
tational load. During contraction, convolution units are fol-
lowed by a max pooling layer, and during expansion, con-
volution units are preceded by an up-sampling layer, both of
scaling factor 2. Skip connections are applied between match-
ing pairs of contraction and expansion convolution units.

To exploit the powerful image segmentation abilities of
the UNet [10], its channels are fed with a long temporal con-
text of 300 ms that generates spectrogram images. During
encoding, short filters jointly capture time-frequency local
connections and produce numerous features that discriminate
residual echo. During decoding, a similar convolution mech-
anism removes these echo signatures while preserving the de-
sired signal. Long skip connections allow recovery of fine-
grained details in the prediction, as features of the same di-
mension are reemployed from earlier layers, gradient flows
directly via skip connections, which enhances optimization,
and features are directly passed from encoder to decoder to
recover spatial information lost during down-sampling.

A tunable design parameter o > 0 is embedded in a cus-
tom loss function J(«) that is minimized during training:

J(@)=L3(P=D)+al2(P)+010%(P)lyso, (5

where P and D, respectively, represent the mini-batch pre-
dicted and desired spectra amplitudes after normalization, as
described in Section 4.2. (3 and o denote the mean squared
{o-norm and variance operators, and I,~( equals 1 when
a > 0 and 0 otherwise. During the training stage, J(«) is
minimized while o penalizes ¢3 (P), which allows a dynamic
tradeoff between the levels of RES and desired-signal dis-
tortion of the system. When o = 0, the error between the
prediction and the near-end signal is minimized. However,
when « > 0, smaller prediction values are generated. This
reduces the level of residual echo but compromises the level
of desired-signal distortion. o (P) mitigates sub-band nulli-
fication that may occur when o # 0. A practical usage of «
is a tunable user interface parameter for adjusting the perfor-
mance of the system according to specific user preferences.
The linear AEC system that precedes the UNet was made
by Phoenix Audio Technologies and operates based on fil-
ter banks. It employs a 150 ms filter length, converges after
1 s, and consumes 200 Kflops. Overall, the joint system is
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comprised of the AEC and RES contains 136 thousand pa-
rameters that consume 1.6 Gflops and memory of 10 MB.
This system meets timing constrains of hands-free commu-
nication [11], [12] on the standard Intel Core i7-8700K CPU
@ 3.7 GHz. Thus, on-device system integration is enabled,
e.g., on the AM5749™ processor by Texas Instruments [15].

4. EXPERIMENTAL SETUP

4.1. Database Acquisition

The SER and signal-to-noise-ratio (SNR) levels captured by
the microphone are calculated by SER =10 log,  [[|d|3/1|.f]13]
and SNR = 101logy, [||d||3/[wl|3] in decibels. Both measures
are obtained using 50% overlapping time frames of 20 ms.
Two data corpora were employed in this study; the AEC chal-
lenge database [11] used for training, and an independently
recorded database used for both training and testing.

The AEC challenge database contains two new open
sources of synthetic and real recordings. The synthetic data
captures 100 hours of clean and noisy single talk and double
talk periods. The real data was derived by a crowd sourcing
effort that yielded 50 hours of audio clips, generated from
2,500 real acoustic environments, audio devices, and human
speaking in single and double talk scenarios that included
changed and unchanged echo paths. SER levels were uni-
formly distributed between -10 and 10 dB and SNR was
randomly sampled between 0 and 40 dB.

Also, independent recordings in real-life conditions were
conducted to test the generalization of the system to unseen
setups and its robustness to low levels of SERs. The near-end
signal was generated via a mouth simulator type 4227-A™
of Briiel&Kjaer so its recordings contained inherent and en-
vironmental system noises. The microphone and loudspeaker
were either enclosed within a distance of 5 cm by speaker-
phones of type Spider MT503™ or Quattro MT301™, or the
echo was played externally by Logitech type Z120™ loud-
speaker. The mouth simulator was placed in three positions
located either at 1, 1.5, or 2 m from the microphone, and was
shifted only between recordings. Transitions in the echo path
were generated by moving the external loudspeaker either 1,
1.5, or 2 m away from the microphone during recordings, pro-
ducing 3 source-receiver positions. The data used for experi-
ments was equally mixed between 5.5 h from the TIMIT [16]
and 5.5 h from the LibriSpeech [17] corpora. Recordings
were performed in 4 different room sizes varied between a
3 x 3 x 2.5m? volume to a larger 5 X 5 x 4 m* volume,
and the reverberation time, i.e. RTgy, varied between 0.3-
0.6 s. For double talk utterances, near-end and far-end speak-
ers were chosen randomly, zero-padded to the same length,
and added in various SER levels between -10 and -20 dB. The
average overlap between near-end and far-end signals was
90%. The number of far-end single-talk, near-end single-talk,
and double-talk utterances was identical. Male and female

Table 1. Performance Measures for RES.

Metric Definition
P
ERLE  10log,, Lz
gl() Hp||2 far-end single talk
aI
SAR  10log,, 4k,
glO ||Z7*d”§ near-end single talk
H
SDR  10log,, —1dlz,
10 lp—dll3 double talk scenario

speakers equally participated, double-talk periods contained
two different speakers, the training and test sets did not share
the same speakers, and every speaker was both the far-end
and near-end speaker. Overall, 11 h of data were generated
and equally split between the training and test sets so both
contained disjoint and balanced setups in terms of acoustic
environments, devices, and speakers. SNR level was 32 &+ 5
dB and sample frequency was 16 KHz.

4.2. Data Processing, Training, and Testing

The microphone and reference signals are processed with
50% overlapping time frames of 20 ms. First, these frames
are inserted to the linear AEC. Then, each of the two output
frames is represented by 161 frequency bins by taking the
amplitude of a 320-point STFT. In training, this spectral data
is typically normalized between O and 1, i.e., for every fre-
quency bin between 1 and 161, the corresponding vector of
frame samples is reduced by its minimum value and divided
by its dynamic range. These training statistics are reapplied to
the test data. Next, batches of 30 frames without overlap, cor-
responding to 300 ms, are inserted to both input channels and
to the single output channel of the UNet. Training optimiza-
tion is done by minimizing the loss function in eq. (5) with a
learning rate of 0.0005, mini-batch size of 4, and 20 epochs
using Adam optimizer [18]. Training duration was 1.5 hours
per 10 hours of training data on an Intel Core 17-8700K CPU
@ 3.7 GHz with two GPUs of type Nvidia GeForce RTX
2080 Ti. During testing, normalized batches of 30 frames are
inserted to the UNet with a step size of one frame. After the
amplitude spectral prediction is generated, every frequency
bin undergoes the inverse normalization process described
above using the training statistics. This result undergoes an
inverse STFT using the error signal phase with the overlap-
add method [19]. An artificial gain may be introduced by the
RES and is compensated as shown in [14].

4.3. Performance Measures

To evaluate performance we use the echo return loss enhance-
ment (ERLE) [20] that measures the echo reduction between
the noisy and enhanced signals when only far-end signal is
present, and signal-to-artifacts-ratio (SAR) that measures the
distortion for near-end single-talk periods [21]. For double-
talk periods, we use the signal-to-distortion-ratio (SDR) [21]
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Table 2. Performance without Echo Change.

UNet Zhang Carbajal
mean | std | mean | std | mean | std
PESQ | 3.61 | 0.24 | 251 | 041 | 247 | 0.55
SDR 7.1 0.8 4.3 1.4 4.1 1.6
ERLE | 40.1 21 35.7 33 21.5 3.6
SAR 8.8 0.8 4.8 1.1 4.5 1.1

Table 3. Performance with Echo Change.

UNet Zhang Carbajal
mean | std | mean | std | mean | std
PESQ | 33 | 025 | 235 | 045 | 2.05 0.7
SDR 7 0.8 | 2.71 1.9 2.8 1.65
ERLE | 385 | 245 | 283 39 18 4
SAR 88 | 095 | 43 1.35 44 1.3

Table 4. Performance Before Linear AEC Convergence.

UNet Zhang Carbajal
mean | std | mean std | mean std
PESQ | 2.88 | 0.5 | 2.02 0.8 191 | 0.95
SDR 4.9 14 2.6 2.1 1.1 1.7
ERLE | 31.8 | 29 | 233 4.1 15.2 4.9
SAR 8.5 1 3.7 1.45 3.7 2.7

Table 5. Performance for Different Values of «.

a=0 a=0.5 a=1
mean | std | mean | std | mean | std
PESQ | 3.61 | 024 | 354 | 0.29 | 345 | 035
SDR 7.1 0.8 6.9 0.95 6.8 1.1
ERLE | 40.1 2.1 41.9 2.2 43.5 22
SAR 8.8 0.8 8.4 0.8 8.2 0.9

that takes echo suppression and speech artifacts into account,
and the perceptual evaluation of speech quality (PESQ) [22].
The performance measures are defined in Table 1. Besides the
PESQ that is calculated over an entire utterance, these mea-
sures are calculated with 50% overlapping frames of 20 ms.

5. EXPERIMENTAL RESULTS

We compare the performance of the proposed system with
two competing deep learning-based RES methods in [13], re-
ferring to its reported “AES+BLSTM” system, and [14]. All
RES models are fed with the outputs of the same linear AEC
discussed in this study. In all experiments, the linear AEC has
converged and o = 0 unless stated otherwise. Every model
is trained using both the entire AEC challenge data and inde-
pendently recorded training data, which accumulates to over
155 h. Performance measures are reported by their mean and
standard deviation (std) values across the entire 5.5 h of the
independently recorded test set, described in Section 4.1.

Results without change in echo path are given in Table 2
and with change in echo path are given in Table 3. Our
method outperforms competition in all the measures, while
also attaining the lowest std. Also, our method is least im-
peded by the changes in echo path, while the models in [13]
and [14] both deteriorate in this scenario. Thus, the proposed
system provides leading generalization ability to unseen real
environments, devices, and speakers and leading robustness
to extremely low levels of SER between -10 and -20 dB.

In the following, we investigate the performance before
the linear AEC converges and during re-convergence, in case
of changed echo paths. As shown in Table 4, performance is
collectively impeded when the linear AEC has not converged.
However, our method still shows leading performance that

points out the high sensitivity of competing methods to con-
verged echo approximation, while the UNet models the resid-
ual echo even from degraded measurements.

Next, we demonstrate the effect of o on the tradeoff be-
tween RES and desired-signal distortion levels. Again, only
unchanged echo paths are considered. Results are presented
in Table 5. It can be observed that increasing « leads to en-
hanced RES but at the expense of desired-signal distortion,
as suggested by the ERLE and SAR measures, respectively.
However, the PESQ, SDR, and SAR measures indicate that
for the given o values, the UNet does not severely degrade
the quality of the desired signal.

6. CONCLUSION

We have introduced an RES method based on a UNet neu-
ral network that receives the outputs of a linear AEC in the
STFT domain. By using depth-wise separable convolution in
the UNet layers, our system consists of 136 thousand parame-
ters that require 1.6 Gflops and 10 MB of memory, which ren-
ders it adequate for on-device applications. This system sat-
isfies hands-free communication timing constraints on a stan-
dard CPU. In addition, we integrate into the system a tunable
tradeoff between echo suppression and signal distortion using
a built-in design parameter. Experiments were conducted us-
ing 150 h of synthetic and real recordings from the AEC chal-
lenge and 11 h of real independent recordings. Results show
state-of-the-art performance in real-life conditions in terms
of echo suppression and desired-signal distortion compared
to competing methods, high generalization to various setups,
and robustness to extremely low levels of SERs.
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